Networks |

Modelling Complex Systems

Some of this lecture is adapted from:

Albert and Barabasi, Reviews of Modern Physics 74 (2002)
M. Barthelemy, Physics Reports 499 (2011)

Newman, Networks (2011)

-previous slides of David Sumpter.



Networks

» Things with connections



Networks

Things with connections
Or, “real life” graphs
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Networks

Can be weighted or unweighted



Networks

Can be directed or undirected



Networks

Can be connected or disjoint



Networks

Can be planar or non-planar
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Real-world Networks

anned networks
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Real-world Networks

Commuter rail network in

Boston area. (a) /
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Toshi Nakagaki and co-workers




Real-world Networks

Slime mould Tokyo Engineers



Real-world Networks




Real-world Networks




Representing Networks

directed
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Representing Networks

»Adjacency matrix A,

directed
Destination .
=1 i=5
‘ o
i=1 O 1 0 0 0
0 0 0 0 0
3
Source 0 1 0 1 0 ®
1 0 1 0 0
0 0 0 1 0 @



Representing Networks

»Adjacency matrix A,

Destination
=1
i=1 O 1 0 0
0 0 0 0
Source 0 1 0 1
1 0 1 0
it 0 0 0 1
In-degree —— 1 2 1

out-degree
j=5 ‘
0 1
0 0
0 2
0 2
0 1
0

directed

Another handy property: (An)ij tells us whether you can go from i to j in n steps



Representing Networks

»Adjacency matrix A,

j=1
i=1 O
1
Source 0

1

degree —— 2

Destination
0 1
1 0
0 1
1 0
0 1

o O O

undirected

Another handy property: (An)ij tells us whether you can go from i to j in n steps



Representing Networks

»Adjacency matrix A,

Destination
=1

i=1 O 15 0 1
15 O 1 0
Source 0 1 0 1
1 0 1 0
it 0 0 0 1

degree —— 2 2.5

o O O

weighted
o
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° 5

Another handy property: (An)ij tells us whether you can go from i to j in n steps



Other networks

« Hypergraph
o Multi-layer Network
« Temporal Network



Five (of many) network measures

« Average degree

e Degree distribution
« Mean path length

« Clustering coefficient

e Maximum modularity/
Community partitions



Degree and average degree

The in in and out degrees are
ki" = Z Aij kiout — Z Aij
j=1 i=1

The average degree is
: E A
C = — ..
i
p = v
i,j

same for in and out degree



Degree distribution

How many people follow you on Twitter.

Twitter friendship links distribution

inDegree
7.in=-1.8778

Num, Friends

10° 10° 10
Num. Users

Figure 2. Incoming degree distribution of Twitter’s network. As the figure shows, there are
a few users with an enormous degree (number of followers). On the contrary, the majority

of them have less than 100 followers.

Degree distribution p(k) tells us how the connectedness varies between

nodes



Degree distribution

How many people you follow on Twitter.

Twitter followers links distribution

outDegree
A out==2.1715

Num. Followers

10° 10° 10 10°
Num. Users

Figure 1. Outgoing degree distribution of Twitter’s network. As the figure shows, there are
a few users with an enormous degree (number of friends). On the contrary, the majority of

them have just at most 1000 friends.

Degree distribution p(k) tells us how the connectedness varies between

nodes



Mean path length

Find shortest path between all pairs i,
The mean path length /is the mean of each
Measures degrees of separation

(Diameter = longest path length)



Distance between two random
individuals

—e— Global
-e- US,

Percentage of pairs within hop distance

0 2 4 6 8 10
hop distance

Figure 2. Diameter. The neighborhood function N(h) showing the percentage of user pairs that are
within A hops of each other. The average distance between users on Facebook in May 2011 was 4.7,
while the average distance within the U.S. at the same time was 4.3.


https://www.youtube.com/watch?v=jO4cnPRMRBA
https://www.youtube.com/watch?v=jO4cnPRMRBA
https://www.youtube.com/watch?v=jO4cnPRMRBA

Mean path length

Sousce: ceacheofacon ceg

ThomasEovensy
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Networks - community partition

Communities of interest
Network: nodes are countries, weight of each link is volume of trade between countries.

GARCIA-PEREZ 2016

USA, Canada, Bahamas, Haiti, Do-
minican Republic, Jamaica, Grenada,
Mexico, Honduras, Venezuela, Peru

China, North Korea, Gambia, Sierra
Leone, Togo, South Sudan

Japan, South Korea, Taiwan, Sin-
gapore, Sri Lanka, Philippines, New
Zealand, Fiji, Papua New Guinea

Garcia-Pérez, 2016



Networks - community partition

Communities of interest

Network: dolphins of doubtful sound, NZ, links between dolphins ‘often’ seen together.

Lusseau PhD Thesis,
Newman & Girvan, Finding and evaluating community structure in networks, Phys Rev E, 2004



Networks - community partition

As stepping stone: - analyse use of language in climate change debate

Network: links between blogs on climate change

400
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1(n=404) 7(n=340) 6(n=302) 23(n=197) 0(n=92) 22(n=88) 3(n=74)
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Figure 3. The distribution of skeptical, accepting, and neutral blogs in the seven largest

among the central groups of blogs concerned with climate change.
Figure 1. The network of climate change blogs, colored by community.

Elgesem, Steskal & Diakopoulos 2015



Networks - community partition

As stepping stone: - analyse use of language in climate change debate

Network: links between blogs on climate change

Table 5. The top 15 collocates around “climate” in communities 1 (skeptic), 23 (accepter), and 7
(accepter) computed with the point-wise mutual information metric.

Top collocates of “CLIMATE”  Top collocates of “CLIMATE”  Top collocates of “CLIMATE”
in the skeptical community S1  in the accepter community A3 in the accepter community Al

1 CLIMATE 1 DENIERS 1 POPPIN

2 SKEPTICS 2 SKEPTICS 2 DENIERS

3 ALARMISM 3 CLIMAT 3 SKEPTICS

4 DENIERS 4 DECADAL 4 OBAMA

5 IPCC 5 CONTRARIANS 5 WWW

6 DECADAL 6 OBAMA 6 EU’S

7 ALARMISTS 7 NOAA’S 7 CLIMATE

8 CLIMAT 8 AGW 8 YVO

9 CHANGE 9 WWW 9 NOAA’S

10 INTERGOVERNMENTAL 10 DENIER 10 WILDFIRES
11 OBAMA 11 CLIMATE 11 CHANGE’S
12 ANTHROPOGENIC 12 VAPOR 12 TIPCC

13 AGW 13 ANTHROPOGENIC 13 ALARMISM
14 IPCC’S 14 ALARMISM 14 PACHAURI
15 WARMING 15 CONTRARIAN 15 DENIER

Figure 1. The network of climate change blogs, colored by community.
Reference corpus: The British National Corpus, approximately 100 million words.

Elgesem, Steskal & Diakopoulos 2015



Mathematics of community partitions

Define a score! “Modularity” <- most popular measure, but not universal

A)  vol(A)2

“(G) = max G) — e(A) _

7(6) = mpeau(6) = 3 28—
0<g*(G)<1 near 1 - high extent of community structure

near O - lack of community structure

Edge contribution/Coverage Degree tax
£ e(A) vol(A)?
94(G) = o q2(G) = > _ =
Ac A Ac A

e(A) - number of edges in part/community A
vol(A) - sum of degrees in part/community A
m - total number of edges in the graph

Newman & Girvan, Finding and evaluating community structure in networks, Phys Rev E, 2004



Networks - community partition




Networks - community partition
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Modelling Networks with (random) graphs

Lattice graphs

Erdos-Renyi random graph/Binomial random graph
Chung-Lu random graph (omitted)

Configuration model

Preferential attachment model

Geometric random graph

Random hyperbolic graph/KPKVB model

How well does the behaviour of each model replicate that in real networks?



Recap-
Five (of many) network measures

« Average degree

e Degree distribution

« Mean path length

e Clustering coefficient *

e Maximum modularity/
Community partitions

What values do these take in real networks?



Real networks

50 R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree (k), the average path length #, and the clustering coefficient C. For a comparison we have included the average
path length Z,,,; and clustering coefficient C,,,, of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size (k) £ C rand C Crand Reference Nr.
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999 1
Internet, domain level 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a, 2
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52909 9.7 5.9 4.79 043 1.8%x10"* Newman, 2001a, 2001b, 2001c 4
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1X10°° Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6
NCSTRL co-authorship 11994 3.59 9.7 7.34 0496 3%x10°% Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70975 39 9.5 8.2 059 54x10°° Barabasi et al., 2001 8
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5%10°° Barabasi et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11
Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001  Ferrer i Cancho and Solé, 2001 14
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16

C. Elegans 282 14 2.65 225 0.28 0.05 Watts and Strogatz, 1998 17




Degree and average degree

The in in and out degrees are

kKin=) A, k=" A,
j=1

i=1

The average degree is
: E A
C = — ..
i
p = v
i,j

same for in and out degree



Degree distribution

How many people follow you on Twitter.

Twitter friendship links distribution

inDegree
7.in=-1.8778

Num, Friends

10° 10° 10
Num. Users

Figure 2. Incoming degree distribution of Twitter’s network. As the figure shows, there are
a few users with an enormous degree (number of followers). On the contrary, the majority

of them have less than 100 followers.

Degree distribution p(k) tells us how the connectedness varies between

nodes



Degree distribution

How many people you follow on Twitter.

Twitter followers links distribution

outDegree
A out==2.1715

Num. Followers

10° 10° 10 10°
Num. Users

Figure 1. Outgoing degree distribution of Twitter’s network. As the figure shows, there are
a few users with an enormous degree (number of friends). On the contrary, the majority of

them have just at most 1000 friends.

Degree distribution p(k) tells us how the connectedness varies between

nodes



Degree distribution
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Figure 10.4: The degree distributions of the World Wide Web. Histograms of the distributions of in- and out-degrees
of pages on the World Wide Web. Data are from the study by Broder et al. [84].

Degree distribution power law - p(k) = k*{-\alpha} Newman ‘Networks’ 2018



Modelling Networks with (random) graphs

Lattice graphs

Erdos-Renyi random graph/Binomial random graph
Chung-Lu random graph

Configuration model

Preferential attachment model

Geometric random graph

Random hyperbolic graph/KPKVB model

How well does the behaviour of each model replicate that in real networks?



Lattice networks

All internal nodes have the same degree
High C (~ constant)

High mean path length (increases as n1/d)



Erdos-Rényi Random graph

Every pair of nodes I,j is connected with
probability p. Total of n nodes

Binomial degree distribution, ¢ = p(n-1)
Low C =c¢/n
Low mean path length | ~ log(n)
Random graph process
Start with n vertices with 0 edges. Each step add

a missing edge.
(Video)



Erdos-Rényi Random graph
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Erdos-Rényi Random graph

- Not a realistic model but good toy model

- Serves as a null model
A differentiation between graphs which are truly modular and
those which are not can ... only be made if we gain an

understanding of the intrinsic modularity of random graphs.
-- Reichardt and Bornholdt



Erdos-Rényi Random graph
- Serves as a null model

g*(dolphins) > g*(random network)??

Modularity of Random Network on 62 vertices

O O \
dolphins =62 0341
edges =159

qg* =0.52
8.4% of possible edges




Configuration Model

Start with degree sequence d 1, ...d n
Place d i half edges on each node
Choose a random matching of half edges

---------

Serves as a null model.

Can choose degree sequence.
Low clustering coefficient (-> 0 as network size increases)



Preferential Attachment Model

Animation - https://www.youtube.com/watch?v=4GDqJVtPEGg

Start with a single edge, or a node with a ‘half-edge’.

Step |,
add vertex v_|i
pick a previously present vertex v_j with probability
proportional to deg(v_j).
Add edge v i~V j

Modifications: add v_i to ‘m’ vertices each step, make probability
proportional to deg(v_j)*c, for some constant c.

Varying C: https://www.youtube.com/channel/UC-P96HKdvFs0Sy4Lp76 THIA



https://www.youtube.com/watch?v=4GDqJVtPEGg
https://www.youtube.com/channel/UC-P96HKdvFs0Sy4Lp76THlA

Random Geometric Graph

- Place n points uniformly. Join any two vertices
with distance less than .
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Tobias Muller


https://www.youtube.com/watch?v=4GDqJVtPEGg

KPKVB model - random hyperbolic graph

Hyperbolic plane curvature -alpha”2
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Figure 1: The random graph G(N;a,v) with N = 500 vertices, » = 2 and o = 0.7 and 3/2.

Miiller and Fountoulakis, Law of large numbers for the largest component in a hyperbolic model of complex networks, 2018



Real networks

50 R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree (k), the average path length #, and the clustering coefficient C. For a comparison we have included the average
path length Z,,,; and clustering coefficient C,,,, of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size (k) £ C rand C Crand Reference Nr.
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999 1
Internet, domain level 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a, 2
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52909 9.7 5.9 4.79 043 1.8%x10"* Newman, 2001a, 2001b, 2001c 4
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1X10°° Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6
NCSTRL co-authorship 11994 3.59 9.7 7.34 0496 3%x10°% Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70975 39 9.5 8.2 059 54x10°° Barabasi et al., 2001 8
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5%10°° Barabasi et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11
Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001  Ferrer i Cancho and Solé, 2001 14
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16

C. Elegans 282 14 2.65 225 0.28 0.05 Watts and Strogatz, 1998 17




KPKVB model - random hyperbolic graph

Krioukov-Papadopoulos-Kitsak-Vahdat-Boguna
Power law degree distribution
Clustering coefficient

Hard to prove results in this model

Miiller and Fountoulakis, Law of large numbers for the largest component in a hyperbolic model of complex networks, 2018



Networks I

Modelling Complex Systems

Some of this lecture is adapted from:

Albert and Barabasi, Reviews of Modern Physics 74 (2002)
M. Barthelemy, Physics Reports 499 (2011)

Newman, Networks (2018) - ebook available Uppsala University Library
-previous slides of David Sumpter.



Modelling Networks with (random) graphs

Lattice graphs

Erdos-Renyi random graph/Binomial random graph
Chung-Lu random graph

Configuration model

Preferential attachment model

Geometric random graph

Random hyperbolic graph/KPKVB model

Small world network*

How well does the behaviour of each model replicate that in real networks?



Recap-
Five (of many) network measures

« Average degree

e Degree distribution

« Mean path length

e Clustering coefficient *

e Maximum modularity/
Community partitions

What values do these take in real networks?



Real networks

50 R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree (k), the average path length #, and the clustering coefficient C. For a comparison we have included the average
path length Z,,,; and clustering coefficient C,,,, of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size (k) £ C rand C Crand Reference Nr.
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999 1
Internet, domain level 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a, 2
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52909 9.7 5.9 4.79 043 1.8%x10"* Newman, 2001a, 2001b, 2001c 4
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1X10°° Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6
NCSTRL co-authorship 11994 3.59 9.7 7.34 0496 3%x10°% Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70975 39 9.5 8.2 059 54x10°° Barabasi et al., 2001 8
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5%10°° Barabasi et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11
Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001  Ferrer i Cancho and Solé, 2001 14
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16

C. Elegans 282 14 2.65 225 0.28 0.05 Watts and Strogatz, 1998 17




(Global) Clustering Coefficient

Measures

- probability that a randomly chosen two path forms a triangle
- high in social networks: you are friends with your friends friends.

N;(v) = #unlabelled triangles having vertex v

N,(v) = #unlabelled 2-stars having central vertex v

u
Graph has 2 triangles -> numerator is 6

y | ostars: No(u) = No(x) = 3, No(y) = No(v) = 1
5 c=6/8=3/4
X



(Global vs. Local) Clustering Coefficient

Local clustering coefficient, ¢;(G), also studied, compare:

Y Ny 1 Ny(v)
_ “e G) = —
c(G) Y N a V] & Nyv)

N;(v) = #unlabelled triangles having vertex v

N,(v) = #unlabelled 2-stars having central vertex v
U Graph has 2 triangles

v > N3(u) = N3(x) =2, N5(y) = N3(v) = 1
V4
@' 2-stars: Ny(ut) = No(x) = 3, No(y) = No(v) = 1
X

e =1/42/13+2/34+1+4+1)=5/6



Small world network

Watts & Strogatz model interpolates between a
structured and random network

Low diameter + high clustering = small world

1 1 o' oo d rcvlvrvn
i o
Regular Small-world oslL C(p) / C(0)
- L ]
0.6 -
0.4 -
- L(p)/ L(O
LE LP/LO)
I [ ]
I e e o
0 P | M | PR | PEEEEY 1
p=0 » p=1 0.0001 0.001 0.01 0.1 1
Increasing randomness D

Watts and Strogatz, Nature 393 (1998)



Stochastic Block model

Generates random graphs with “planted
communities”. Also called planted partition model

(For two communities):
Parameters n, k=2, p, 9. (p>q)
Start with n nodes.

For each node colour red prob. 1/2, otherwise blue
For each pair of vertices uv: if monochromatic join
with probabillity p, otherwise with probability q.




Stochastic Block model

- Generates random graphs with “planted
communities”. Also called planted partition model

Political blog, US 2004 election SBM (n, k, p, Q):
~Adam Glance 2006 (1000, 5, 0.02, 0.001)



Aside: Distinguishing graph models

You are told you have a random graph from model A
or model B, each probability 1/2. Can you say which
model (with good likelihood).

(e.g. Erdos-Renyi/binomial random graph
distribution, or Stochastic block model)

Active area of research!

Questions

- for what parameter values can you distinguish?
- what test statistics on networks distinguish?

- what algorithms can distinguish? (Fast?)



Monte-Carlo tests

Q: Is the test statistic on our network, *, expected if network
is drawn from the null distribution.

e.g. modularity of network - compare network to configuration
model same degree

- useful when we don’t know the distribution
- need to be able to sample from the null distribution
- discrete data has ties (break randomly and method still valid).



Monte-Carlo tests

Q: Is the test statistic on our network, *, expected if network

is drawn from the null distribution.
e.g. modularity of network - compare network to configuration
model same degree

Method fora = m/(n + 1)

- sample n from the null distribution and calculate test statistic 7y, ...z,
e.g. sample n configuration models and calculate modularity score of each
- order r*, 1, ..., I,

- if £* among top m values reject null hypothesis for distribution of

network
- rule of thumb, take m at least 5.



Monte-Carlo tests

If null hypothesis true all orderings of data are
equally likely, the probability that the one you
observe is among the top mis m/(n + 1)

Also called ‘parametric bootstrapping’, ‘conditional uniform graph test’

Method fora = m/(n+ 1)

- sample n from the null distribution and calculate test statistic 7y, ...z,
e.g. sample n configuration models and calculate modularity score of each
- order r*, 1, ..., I,

- if £* among top m values reject null hypothesis for distribution of

network
- rule of thumb, take m at least 5.



Monte-Carlo tests

If null hypothesis true all orderings of data are
equally likely, the probability that the one you
observe is among the top mis m/(n + 1)

Also called ‘parametric bootstrapping’, ‘conditional uniform graph test’

Watch
- https://www.youtube.com/watch?v=QT2xj9k00q0
- 1:07-1:11 discusses Monte-Carlo test



https://www.youtube.com/watch?v=QT2xj9k00q0

Monte Carlo example

- with Erdos-Renyi random graph as null model.

g*(dolphins) > g*(random network)??

Modularity of Random Network on 62 vertices

SR

O
dolphins =62 0.34 1
edges =159 v
q* =052 - The test statistic on our network is #* = 0.52
8.4% of possible edges - Red dots on graph above give test statistic on graphs

sampled from the null model. Note ¢* is greater than
Calculate p so that null model h?ﬁ# Soagni?ls) value of test statistic on any generated graph.

expected degree: p = #edges/ ,)



Friendship Paradox
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https://opinionator.blogs.nytimes.com/2012/09/17/friends-you-can-count-on/
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Figure 1: An example of a directed network of a social media
site with information flow links. Users receive information
from their friends and broadcast information to their follow-

ers.



