
Networks I

Modelling Complex Systems

Some of this lecture is adapted from: 
Albert and Barabasi, Reviews of Modern Physics 74 (2002)  
M. Barthelemy, Physics Reports 499 (2011) 
Newman, Networks (2011) 
-previous slides of David Sumpter.



Networks
 Things with connections 



Networks
•  Things with connections 
•  Or, “real life” graphs 
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Networks
Can be weighted or unweighted 
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Networks
Can be directed or undirected 
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Networks
Can be connected or disjoint 
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Networks
Can be planar or non-planar 

1

2

3

4

5



Real-world Networks
Planned networks



Real-world Networks

Commuter rail network in 
Boston area. 

Physical and planar.



Toshi Nakagaki and co-workers



Real-world Networks

Slime mould Tokyo Engineers



Real-world Networks



Real-world Networks



Representing Networks
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Representing Networks
Adjacency matrix Aij 
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Representing Networks
Adjacency matrix Aij 
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Representing Networks
Adjacency matrix Aij 
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Representing Networks
Adjacency matrix Aij 
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Other networks

• Hypergraph 
• Multi-layer Network 
• Temporal Network



Five (of many) network measures

• Average degree 
• Degree distribution 
• Mean path length 
• Clustering coefficient 
• Maximum modularity/ 

Community partitions 

…….



Degree and average degree

c =
1
𝑛 ∑

𝑖,𝑗

𝐴𝑖𝑗

same for in and out degree

𝑘𝑖𝑛
𝑖 = ∑

𝑗=1

𝐴𝑖𝑗

The in in and out degrees are

𝑘𝑜𝑢𝑡
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The average degree is



Degree distribution
How many people follow you on Twitter.

Degree distribution p(k) tells us how the connectedness varies between 
nodes



Degree distribution
How many people you follow on Twitter.

Degree distribution p(k) tells us how the connectedness varies between 
nodes



Mean path length
• Find shortest path between all pairs i,j 

• The mean path length l is the mean of each 

• Measures degrees of separation 

(Diameter = longest path length) 
 



Distance between two random 
individuals

 
 

 

https://www.youtube.com/watch?v=jO4cnPRMRBA
https://www.youtube.com/watch?v=jO4cnPRMRBA
https://www.youtube.com/watch?v=jO4cnPRMRBA


Mean path length



Networks - community partition

Network: nodes are countries, weight of each link is volume of trade between countries.

4

Communities of interest

 
Garcia-Pérez, 2016



Networks - community partition

Network: dolphins of doubtful sound, NZ, links between dolphins ‘often’ seen together.

3

4

Communities of interest

Lusseau PhD Thesis, 
Newman & Girvan, Finding and evaluating community structure in networks, Phys Rev E, 2004

group splitting is included also.
The split into two groups appears to correspond to a

known division of the dolphin community !39". Lusseau re-
ports that for a period of about two years during observation
of the dolphins they separated into two groups along the
lines found by our analysis, apparently because of the disap-
pearance of individuals on the boundary between the groups.
When some of these individuals later reappeared, the two
halves of the network joined together once more. As Lusseau
points out, developments of this kind illustrate that the dol-
phin network is not merely a scientific curiosity but, like
human social networks, is closely tied to the evolution of the
community. The subgroupings within the larger half of the
network also seem to correspond to real divisions among the
animals: the largest subgroup consists almost of entirely of
females and the others almost entirely of males, and it is
conjectured that the split between the male groups is gov-
erned by matrilineage !D. Lusseau #personal communica-
tion$".
Figure 12 shows the community structure of the network

of interactions between major characters in Victor Hugo’s
sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of
Doubtful Sound !38,39", extracted using the shortest-path version of
our algorithm. The squares and circles denote the primary split of
the network into two groups, and the circles are subdivided further
into four smaller groups as shown. The modularity for the split is
Q!0.52. The network has been drawn with longer edges between
vertices in different communities than between those in the same
community, to make the community groupings clearer. The same is
also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity
achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12



Networks - community partition

Network: links between blogs on climate change
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As stepping stone: - analyse use of language in climate change debate

Elgesem, Steskal & Diakopoulos 2015



Networks - community partition

Network: links between blogs on climate change
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Mathematics of community partitions

Define a score! “Modularity”   <- most popular measure, but not universal

Edge contribution/Coverage Degree tax

e(A) - number of edges in part/community A 
vol(A) - sum of degrees in part/community A 
m - total number of edges in the graph

Newman & Girvan, Finding and evaluating community structure in networks, Phys Rev E, 2004

0 ≤ q*(G) ≤ 1 near 1 - high extent of community structure 
near 0 - lack of community structure



Networks - community partition

Introduction Edge Expansion & Random Cubic Lattices Open Questions

Edge contribution Degree tax

qE
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Networks - community partition

Introduction Edge Expansion & Random Cubic Lattices Open Questions
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Modelling Networks with (random) graphs
• Lattice graphs 

• Erdos-Renyi random graph/Binomial random graph 

• Chung-Lu random graph (omitted) 

• Configuration model  

• Preferential attachment model 

• Geometric random graph 

• Random hyperbolic graph/KPKVB model  

How well does the behaviour of each model replicate that in real networks?



Recap- 
Five (of many) network measures
• Average degree 
• Degree distribution 
• Mean path length 
• Clustering coefficient *  
• Maximum modularity/ 

Community partitions 
What values do these take in real networks?



Real networks



Degree and average degree

c =
1
𝑛 ∑

𝑖,𝑗

𝐴𝑖𝑗

same for in and out degree

𝑘𝑖𝑛
𝑖 = ∑

𝑗=1

𝐴𝑖𝑗

The in in and out degrees are
𝑘𝑜𝑢𝑡

𝑖 = ∑
𝑖=1

𝐴𝑖𝑗

The average degree is



Degree distribution
How many people follow you on Twitter.

Degree distribution p(k) tells us how the connectedness varies between 
nodes



Degree distribution
How many people you follow on Twitter.

Degree distribution p(k) tells us how the connectedness varies between 
nodes



Degree distribution
How many people you follow on Twitter.

Degree distribution power law - p(k) = k^{-\alpha}   Newman ‘Networks’ 2018



 

Modelling Networks with (random) graphs
• Lattice graphs 

• Erdos-Renyi random graph/Binomial random graph 

• Chung-Lu random graph 

• Configuration model  

• Preferential attachment model 

• Geometric random graph 

• Random hyperbolic graph/KPKVB model  

How well does the behaviour of each model replicate that in real networks?



Lattice networks

•  All internal nodes have the same degree 

•  High C        (~ constant) 

•  High mean path length (increases as n1/d) 



Erdös-Rényi Random graph
Every pair of nodes i,j is connected with     

probability p. Total of n nodes  

• Binomial degree distribution, c = p(n-1) 

•  Low C          = c/n 

•  Low mean path length l  ~ log(n) 

Random graph process  
Start with n vertices with 0 edges. Each step add 
a missing edge.  
(Video)



Erdös-Rényi Random graph

- Degree distribution ….  



Erdös-Rényi Random graph

- Not a realistic model but good toy model 

- Serves as a null model 
A differentiation between graphs which are truly modular and 
those which are not can ...  only be made if we gain an 
understanding of the intrinsic modularity of random graphs. 
-- Reichardt and Bornholdt  



Erdös-Rényi Random graph
- Serves as a null model 



Configuration Model
Start with degree sequence d_1, … d_n 
Place d_i half edges on each node 
Choose a random matching of half edges 

Serves as a null model. 

Can choose degree sequence.  
Low clustering coefficient (-> 0 as network size increases) 



 

 

Preferential Attachment Model
• Animation - https://www.youtube.com/watch?v=4GDqJVtPEGg

• Start with a single edge, or a node with a ‘half-edge’.

• add vertex v_i 
• pick a previously present vertex v_j with probability 

proportional to deg(v_j).  
• Add edge v_i ~ v_j 

 

• Step i,

Modifications: add v_i to ‘m’ vertices each step, make probability 
proportional to deg(v_j)^c, for some constant c. 

• Varying c: https://www.youtube.com/channel/UC-P96HKdvFs0Sy4Lp76THlA

https://www.youtube.com/watch?v=4GDqJVtPEGg
https://www.youtube.com/channel/UC-P96HKdvFs0Sy4Lp76THlA


 

 

Random Geometric Graph

Tobias Muller

500 points. r=0.03, r=0.06, r=0.09

• Place n points uniformly. Join any two vertices 
with distance less than r. 

 

https://www.youtube.com/watch?v=4GDqJVtPEGg


 

 

• KPKVB model - random hyperbolic graph

• Hyperbolic plane curvature -alpha^2

Müller and Fountoulakis, Law of large numbers for the largest component in a hyperbolic model of complex networks, 2018



Real networks



 

 

• KPKVB model - random hyperbolic graph

• Krioukov-Papadopoulos-Kitsak-Vahdat-Boguñá 

• Power law degree distribution 

• Clustering coefficient 

• Hard to prove results in this model 

Müller and Fountoulakis, Law of large numbers for the largest component in a hyperbolic model of complex networks, 2018



Networks II

Modelling Complex Systems

Some of this lecture is adapted from: 
Albert and Barabasi, Reviews of Modern Physics 74 (2002)  
M. Barthelemy, Physics Reports 499 (2011) 
Newman, Networks (2018) - ebook available Uppsala University Library 
-previous slides of David Sumpter.



 

Modelling Networks with (random) graphs
• Lattice graphs 

• Erdos-Renyi random graph/Binomial random graph 

• Chung-Lu random graph  

• Configuration model  

• Preferential attachment model 

• Geometric random graph 

• Random hyperbolic graph/KPKVB model 

• Small world network* 

How well does the behaviour of each model replicate that in real networks?



Recap- 
Five (of many) network measures
• Average degree 
• Degree distribution 
• Mean path length 
• Clustering coefficient *  
• Maximum modularity/ 

Community partitions 
What values do these take in real networks?



Real networks



(Global) Clustering Coefficient
Measures  
- probability that a randomly chosen two path forms a triangle 
- high in social networks: you are friends with your friends friends. 

N3(v) = #unlabelled triangles having vertex v

c(G) =
∑v∈V N3(v)

∑v∈V N2(v)

N2(v) = #unlabelled 2-stars having central vertex v
u

v

x

y
Graph has 2 triangles -> numerator is 6  
2-stars: ,  
 

 

N2(u) = N2(x) = 3 N2(y) = N2(v) = 1

∴ c = 6/8 = 3/4



(Global vs. Local) Clustering Coefficient

Local clustering coefficient, , also studied, compare:cL(G)

N3(v) = #unlabelled triangles having vertex v

c(G) =
∑v∈V N3(v)

∑v∈V N2(v)

N2(v) = #unlabelled 2-stars having central vertex v
u

v

x

y

Graph has 2 triangles  
-> ,   
 
2-stars: ,  
 

 

N3(u) = N3(x) = 2 N3(y) = N3(v) = 1

N2(u) = N2(x) = 3 N2(y) = N2(v) = 1

∴ cL = 1/4(2/3 + 2/3 + 1 + 1) = 5/6

cL(G) =
1

|V | ∑
v∈V

N3(v)
N2(v)



Small world network
•  Watts & Strogatz model interpolates between a 

structured and random network 

•  Low diameter + high clustering = small world

Watts and Strogatz, Nature 393 (1998)



Stochastic Block model
• Generates random graphs with “planted 

communities”. Also called planted partition model 

• (For two communities): 
• Parameters n, k=2, p, q. (p>q) 

Start with n nodes. 
For each node colour red prob. 1/2, otherwise blue 

• For each pair of vertices uv: if monochromatic join 
with probability p, otherwise with probability q.



Stochastic Block model
• Generates random graphs with “planted 

communities”. Also called planted partition model 
•

Political blog, US 2004 election 
~Adam Glance 2006

SBM (n, k, p, q): 
(1000, 5, 0.02, 0.001)



Aside: Distinguishing graph models
You are told you have a random graph from model A 
or model B, each probability 1/2. Can you say which 
model (with good likelihood). 
 
(e.g. Erdos-Renyi/binomial random graph 
distribution, or Stochastic block model) 
 
Active area of research!  
 
Questions  
- for what parameter values can you distinguish? 
- what test statistics on networks distinguish?  
- what algorithms can distinguish? (Fast?)



Monte-Carlo tests

- useful when we don’t know the distribution  
- need to be able to sample from the null distribution 
- discrete data has ties (break randomly and method still valid).  

Q: Is the test statistic on our network, , expected if network 
is drawn from the null distribution.  
e.g. modularity of network - compare network to configuration 
model same degree

t*



Monte-Carlo tests

Method for  
-  sample  from the null distribution and calculate test statistic , 
e.g. sample  configuration models and calculate modularity score of each;   
- order  
- if  among top  values reject null hypothesis for distribution of 

network 
- rule of thumb, take  at least 5. 

α = m /(n + 1)
n t1, …tn

n
t*, t1, …, tn

t* m

m

Q: Is the test statistic on our network, , expected if network 
is drawn from the null distribution.  
e.g. modularity of network - compare network to configuration 
model same degree 

t*



Monte-Carlo tests

Method for  
-  sample  from the null distribution and calculate test statistic , 
e.g. sample  configuration models and calculate modularity score of each;   
- order  
- if  among top  values reject null hypothesis for distribution of 

network 
- rule of thumb, take  at least 5.

α = m /(n + 1)
n t1, …tn

n
t*, t1, …, tn

t* m

m

If null hypothesis true all orderings of data are 
equally likely, the probability that the one you 
observe is among the top  is  
Also called ‘parametric bootstrapping’, ‘conditional uniform graph test’  

m m /(n + 1)



Monte-Carlo tests

Watch  
- https://www.youtube.com/watch?v=QT2xj9k00q0 
- 1:07-1:11 discusses Monte-Carlo test 

If null hypothesis true all orderings of data are 
equally likely, the probability that the one you 
observe is among the top  is  
Also called ‘parametric bootstrapping’, ‘conditional uniform graph test’ 

m m /(n + 1)

https://www.youtube.com/watch?v=QT2xj9k00q0


Monte Carlo example
- with Erdos-Renyi random graph as null model.

- Calculate  so that null model has same  
expected degree: 

p
p = #edges/(#dolphins

2 )

- The test statistic on our network is t* = 0.52
- Red dots on graph above give test statistic on graphs 

sampled from the null model. Note  is greater than 
value of test statistic on any generated graph.

t*



Friendship Paradox

https://opinionator.blogs.nytimes.com/2012/09/17/friends-you-can-count-on/




