Modelling Complex Systems

Self-propelled particles

This lecture is adapted from Vicsek, T. & Zafeiris, A. (2012) Collective Motion. And slides of David Sumpter See: arXiv:1010.5017v2

Why do animals move together?

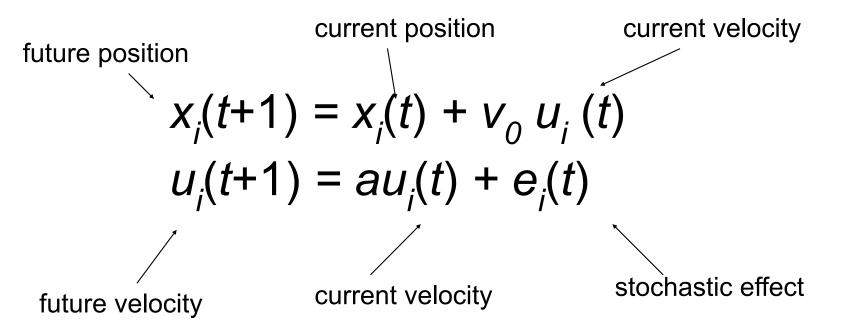
- Increased accuracy (many estimates)
- Increased awareness (many eyes)
- Confuse predators and reduce encounters

How do animals move together?

- Group formation usually seems to be *spontaneous*.
- Based on local interactions
- Phenomenological models
- Can ignore 'first principles' physics!
 e.g. Conservation of momentum
- Use biological principles and limits instead.

Random walk in one dimension

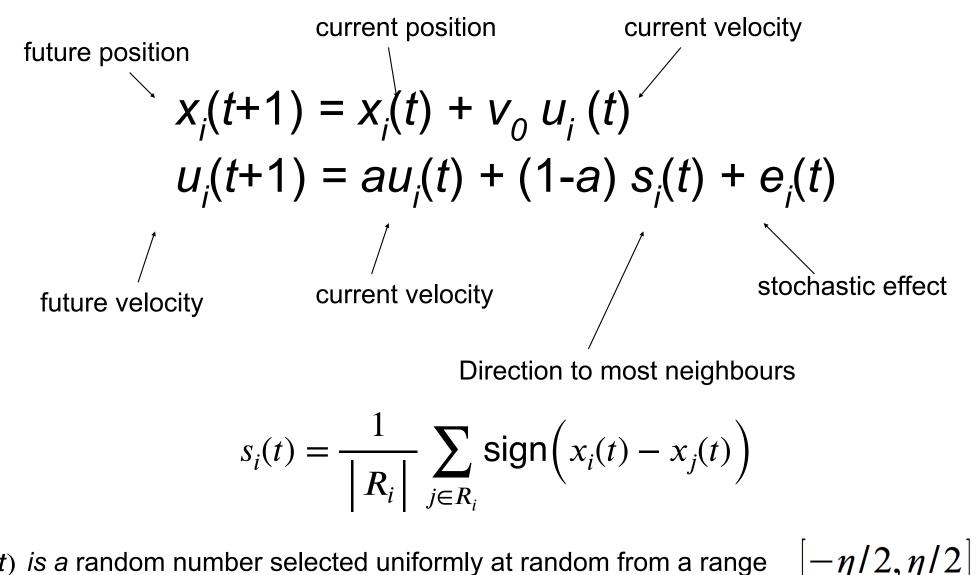
• Run 'RandomWalk1D'



 $e_i(t)$ is a random number selected uniformly at random from a range |

$$\left[-\eta/2,\eta/2\right]$$

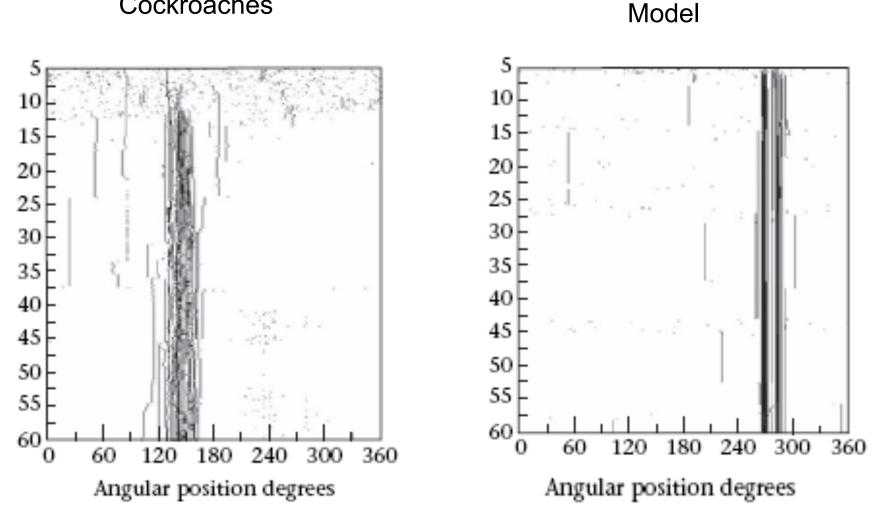
Attraction in one dimension Run 'Aggregate1D'



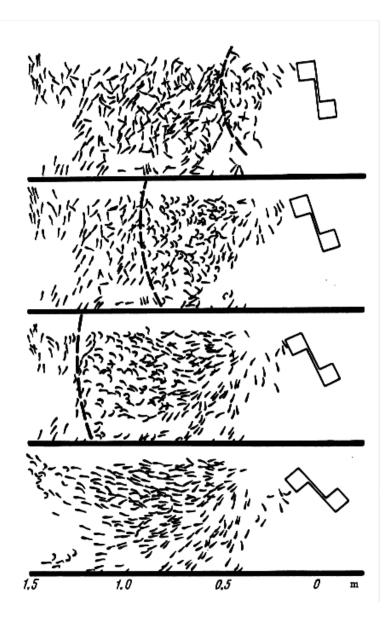
 $e_i(t)$ is a random number selected uniformly at random from a range

Cockroach aggregation

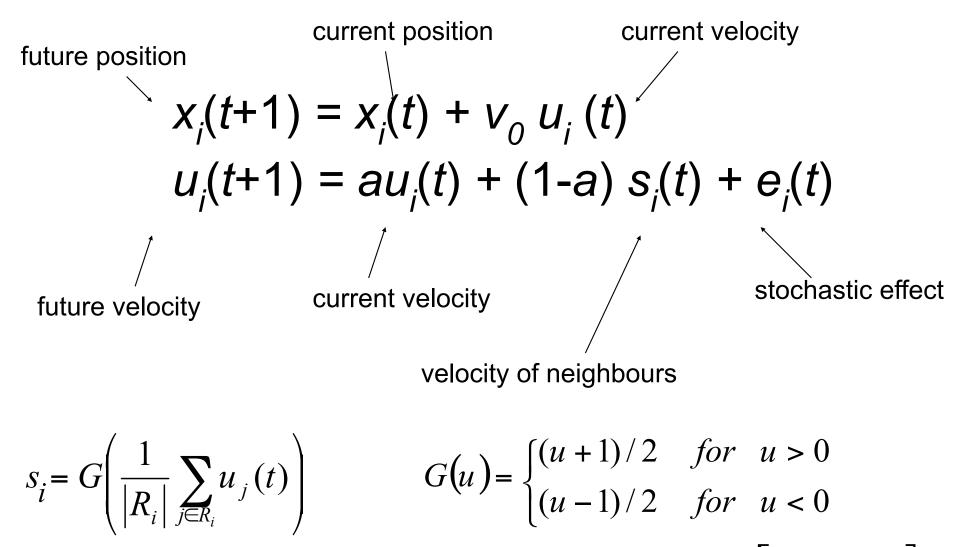
Cockroaches



Radakov's fish

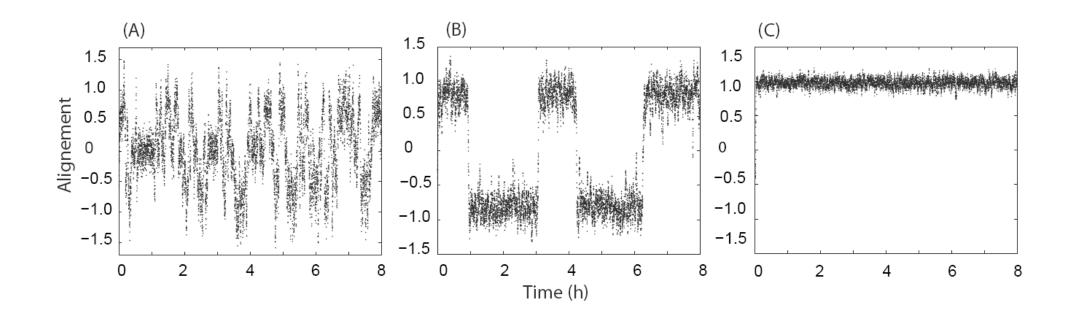


Alignment model in one dimension • Run 'Align1D'



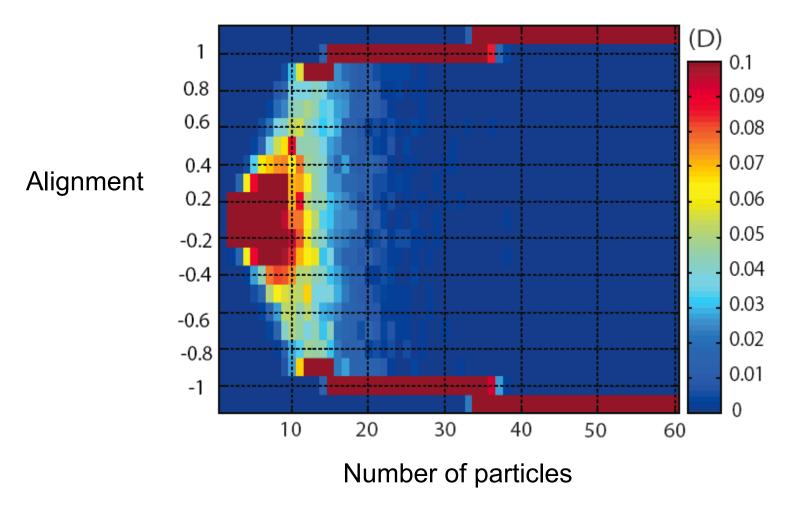
e is a random number selected uniformly at random from a range $\left[-\eta / 2, \eta / 2\right]$

Alignment



 $\phi = \frac{1}{n} \sum_{i=1}^{n} \underline{u}_{i}(t)$ measures order in the system.

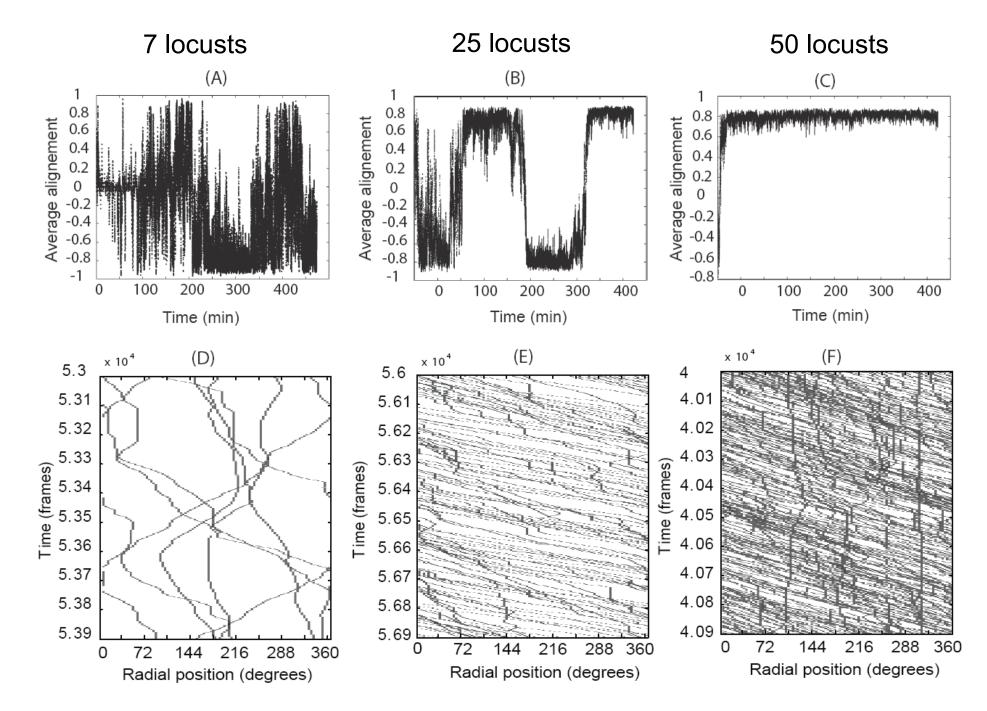
1D self-propelled particles



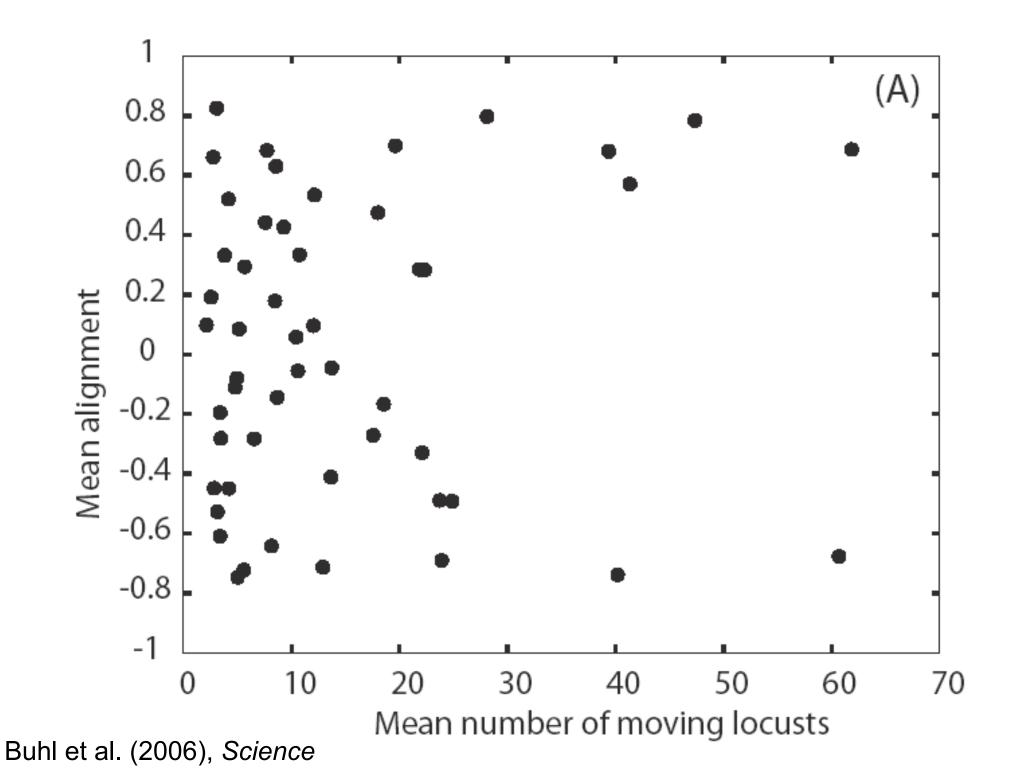
 $\phi = \frac{1}{n} \sum_{i=1}^{n} \underline{u}_{i}(t) \text{ measures order in the system (alignment).}$

Buhl et al. (2006), *Science* Yates et al. (2009), *PNAS*

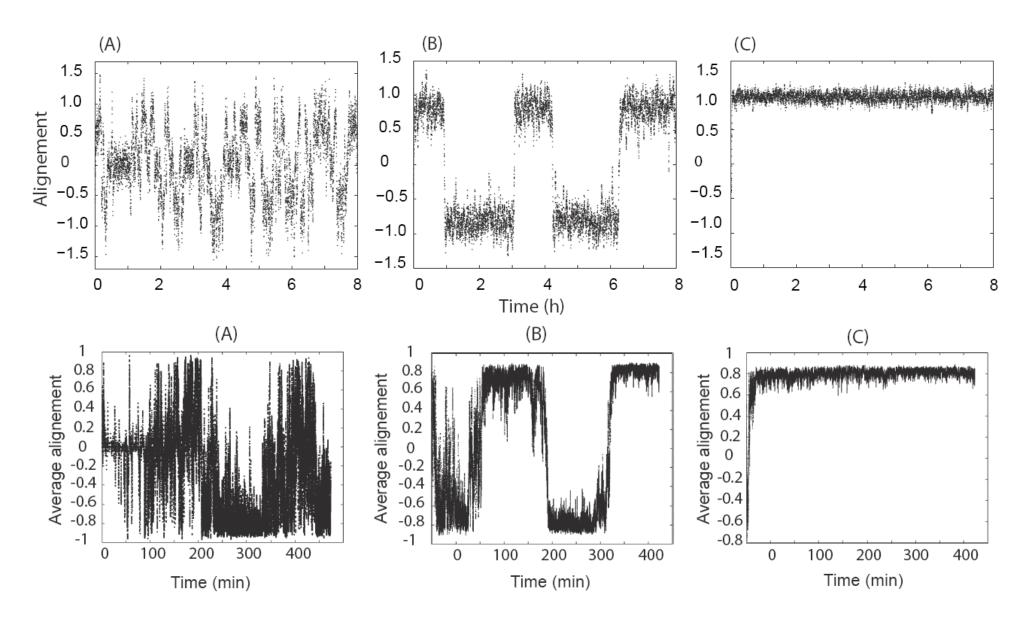
Buhl et al. (2006), *Science* Yates et al. (2009), *PNAS*



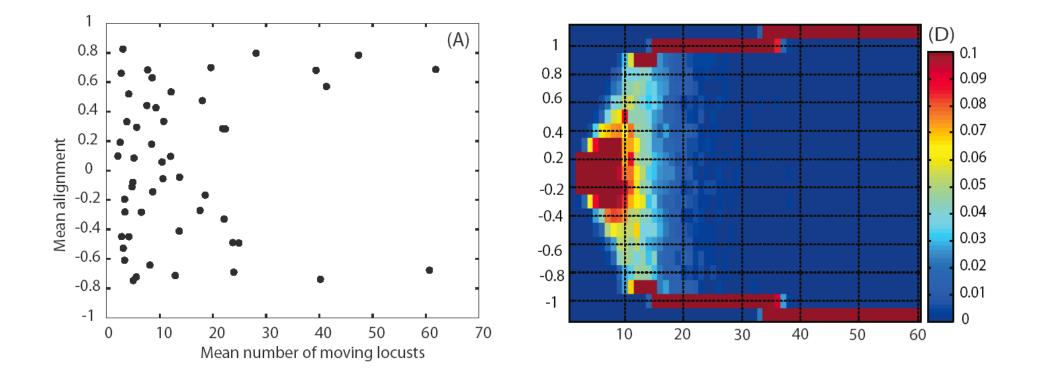
Buhl et al. (2006), Science



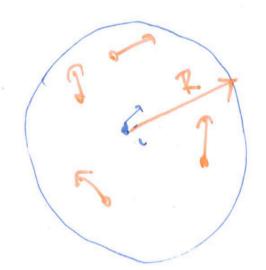
Model vs Experiment



Model vs Experiment



Vicsek Model



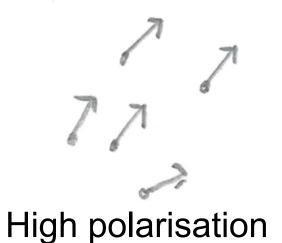
N: number of particles
η: noise parameter
L: size of domain *R: radius of interaction v: speed*

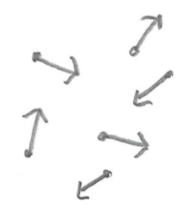
Angular update rule: $\theta_i(t+1) = \tan^{-1} \left(\frac{\sum_{j \in R_i} \sin(\theta_j(t))}{\sum_{j \in R_i} \cos(\theta_j(t))} \right) + e(t)$ e(t) is a random number selected uniformly at random from a range $\left[-\eta/2, \eta/2 \right]$

Vicsek et al., PRL 75 (1995)

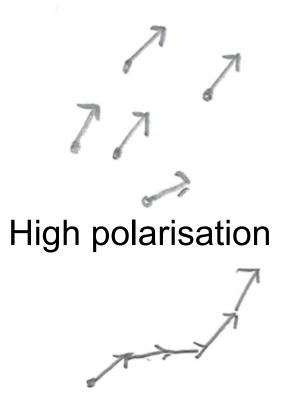
2D Alignment

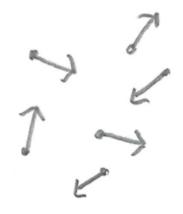
• Run 'Align2D'



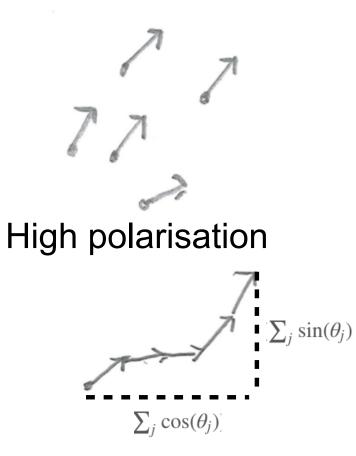


Low Polarisation



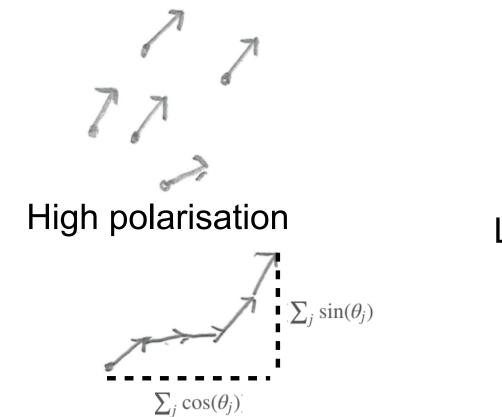


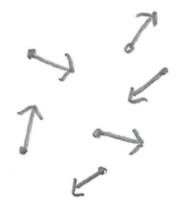
Low Polarisation





Low Polarisation



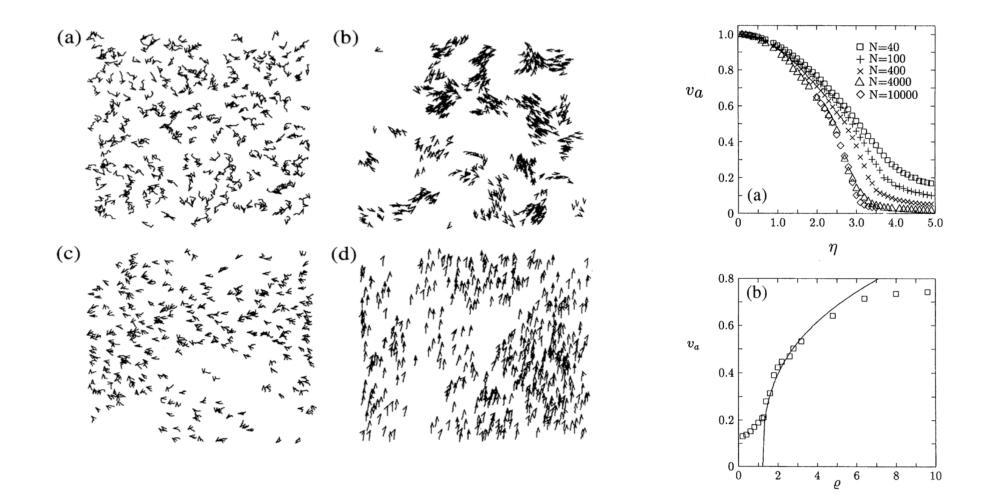


Low Polarisation

Polarisation of: $\theta_1, \theta_2, \dots, \theta_N$

$$= \frac{1}{N} \sqrt{(\sum_j \sin(\theta_j))^2 + (\sum_j \cos(\theta_j))^2}$$

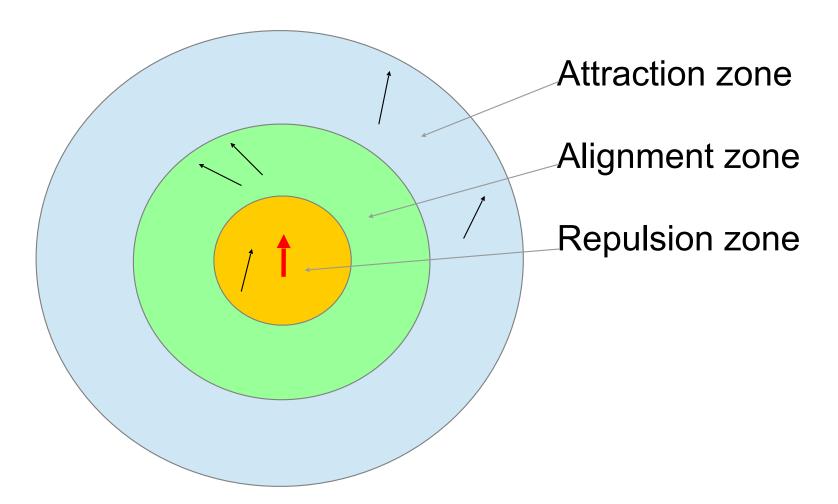
Vicsek Model



Vicsek et al., PRL 75 (1995)

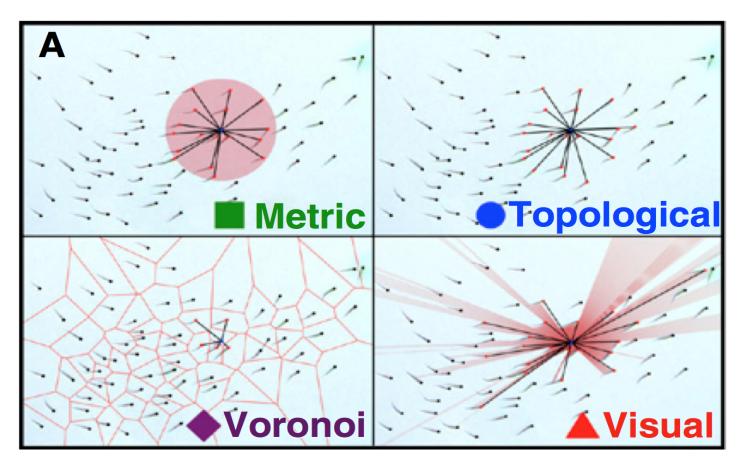
Attraction/Repulsion

"Boids" model



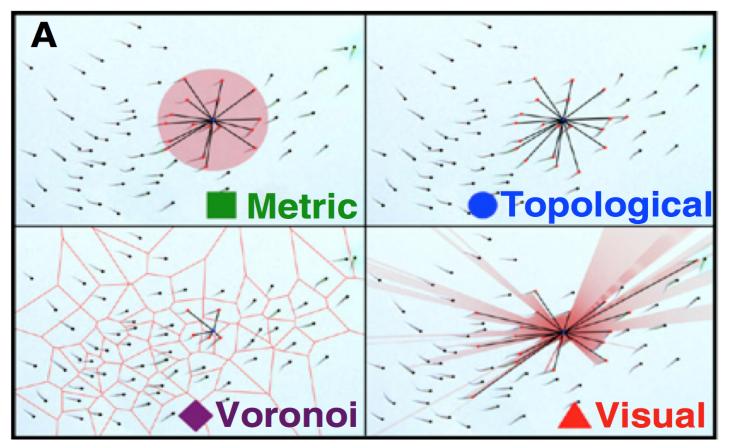
See: Couzin et al., J. Theor. Bio. (2002)

Alternative distance measures



Strandburg-Peshkin et al., Current Biology (2013)

Alternative distance measures



Metric: all individuals within a certain distance.

Topological: a fixed number of nearest neighbors.

Voronoi: those individuals sharing a boundary in a Voronoi tes-sellation of the group.

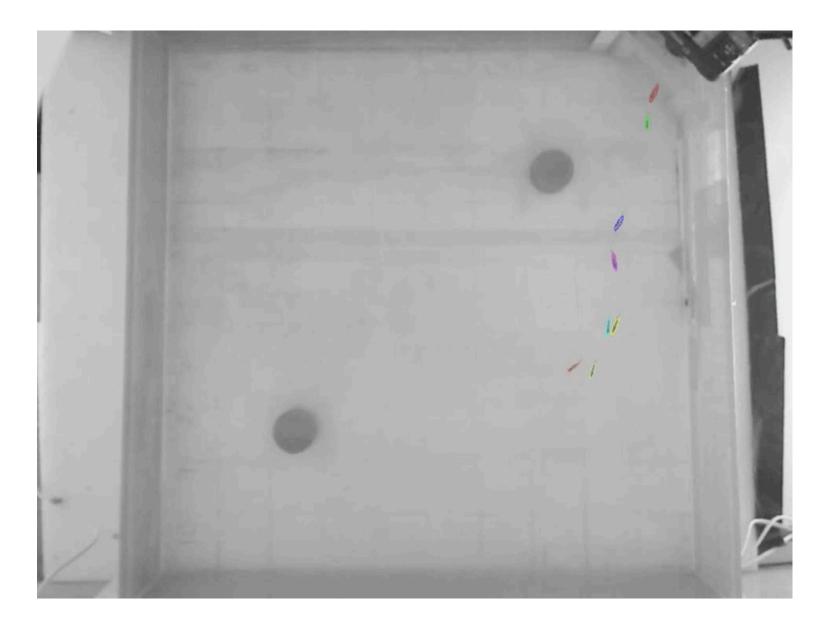
Visual: all individuals that occupy an angular area on the retina of the focal fish that is greater than a threshold value.

Strandburg-Peshkin et al., Current Biology (2013)

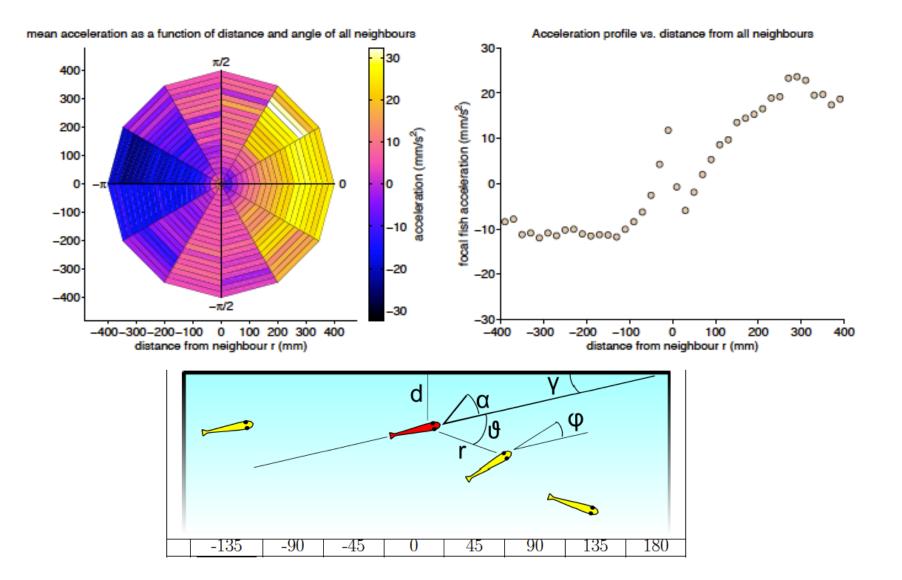
Even more options

- Maximum turning angles
- Blind angles
- Attraction/repulsion potentials
- Reaction times
- Wall interactions
- Variable speed
- Variation in individuals
- Pheromone trails
- Etc....

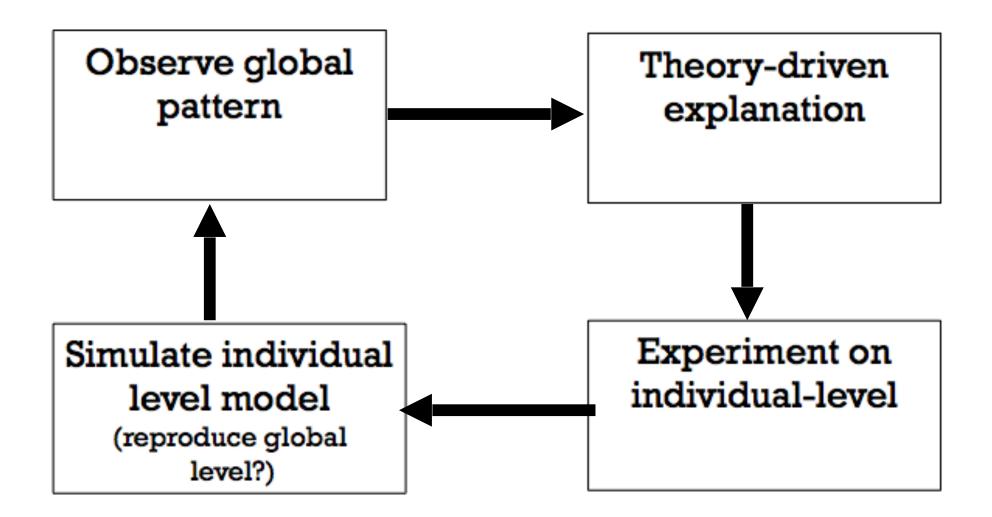
Rules of motion

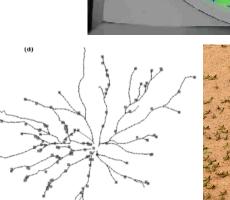


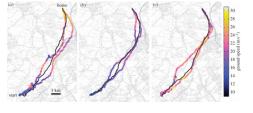
Using data to fit models



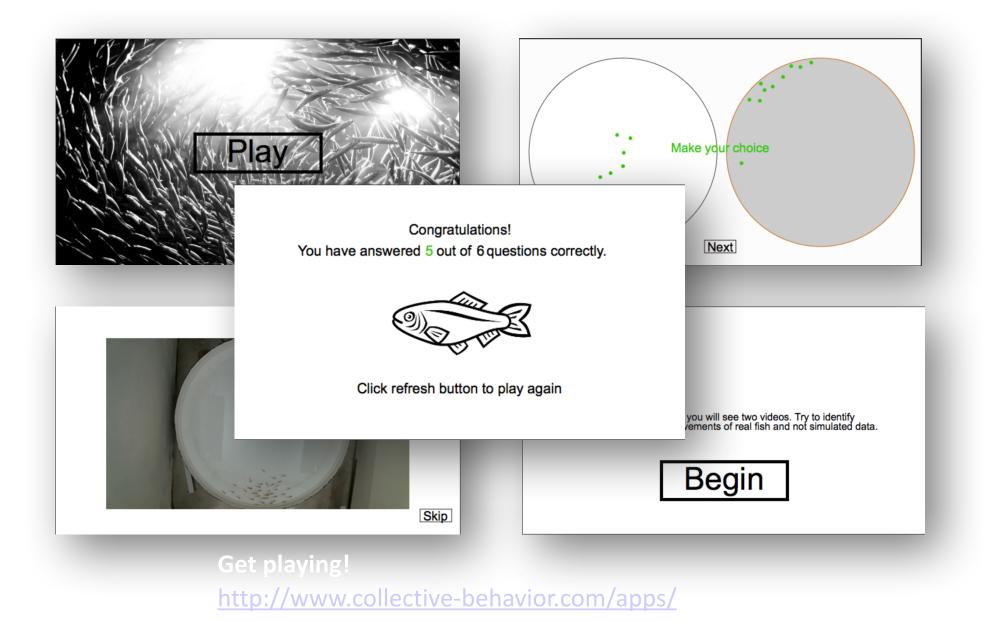
The modelling cycle

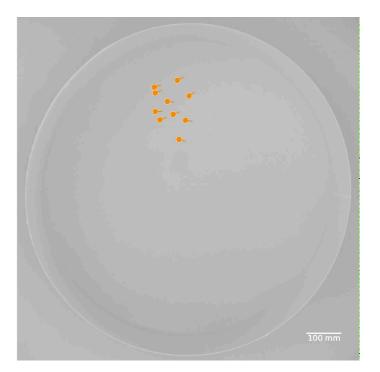




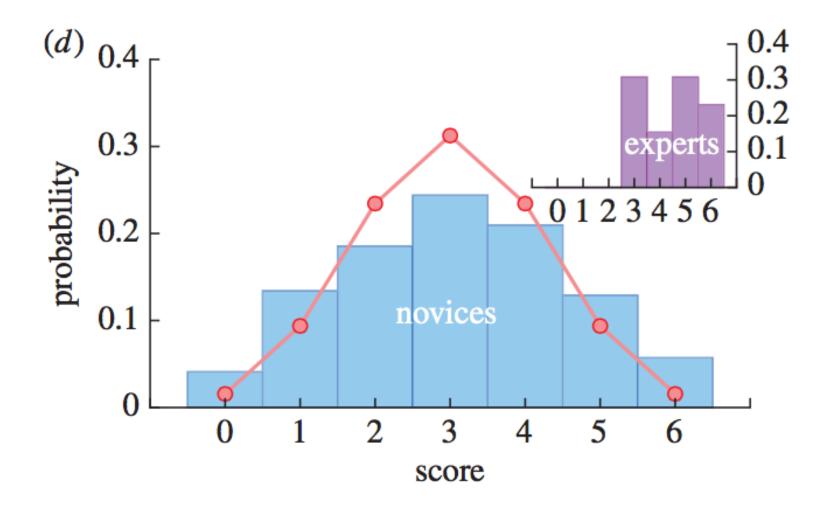


Can you tell the difference between real and simulated fish?

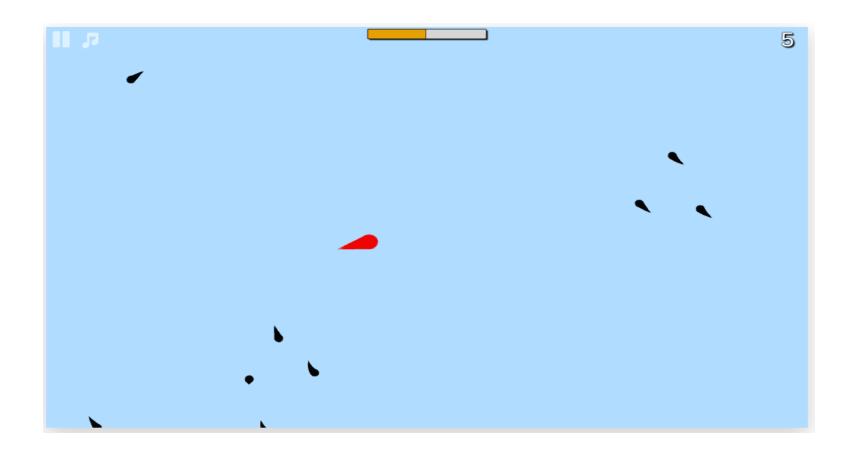




Can people tell the difference between real and simulated fish?



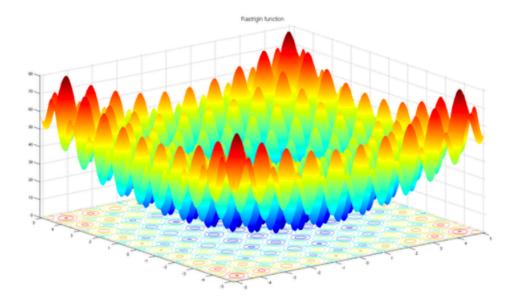
Evolving prey

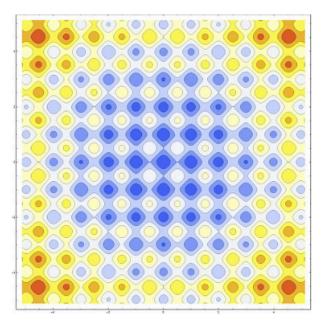


http://collective-behavior.com/apps/fishindanger/webgl

Project - Particle Swarm Optimisation

Optimisation problem. Find global minimum/local minima.



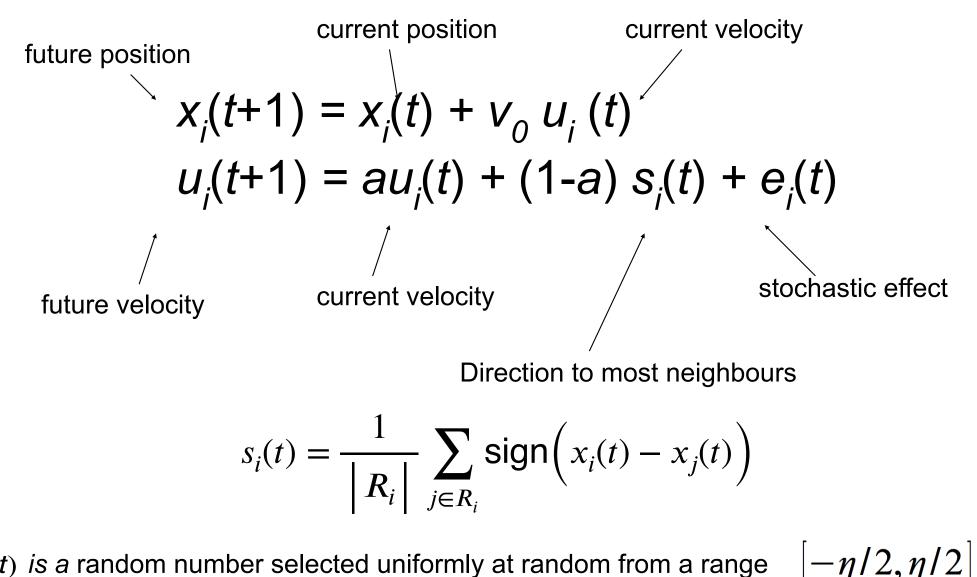


Benchmark: Rastrign function

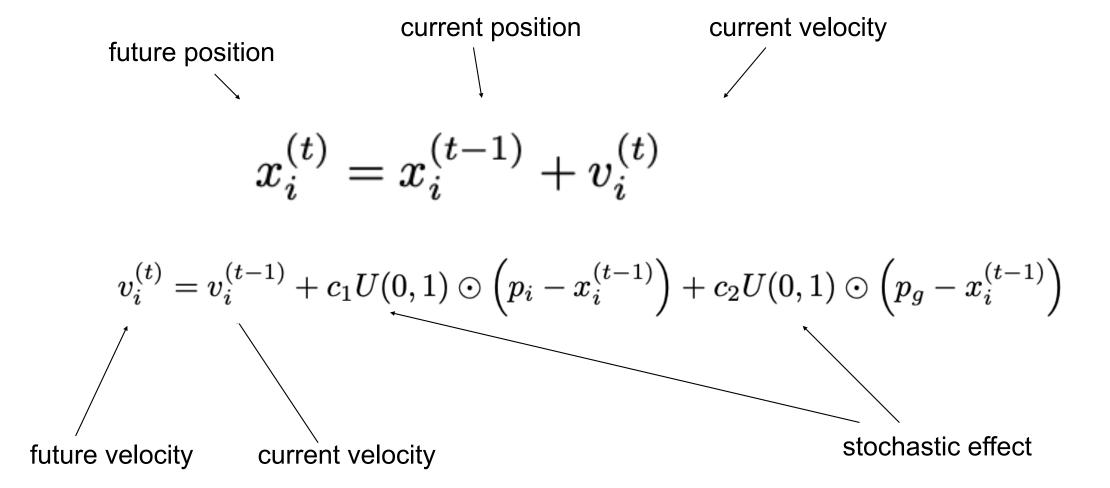
$$F(x_1, x_2) = 10n + \sum_{i=1}^{2} x_i^2 - 10\cos(2\pi x_i) \qquad x_i \in [-5.12, 5.12]$$

Miranda, Lester. PySwarms: a research toolkit for particle swarm optimization in Python. Journal of Open Source Software (2018)

Recall: attraction in one dimension



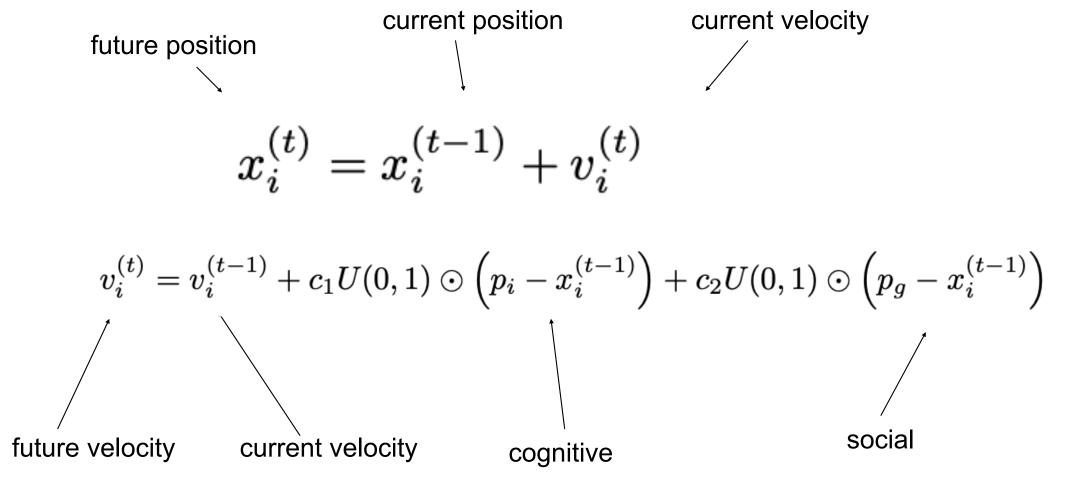
 $e_i(t)$ is a random number selected uniformly at random from a range



N particles. p_1, \ldots, p_N best positions of each particle. p_g - best position of particles in neighbourhood

Kennedy, James, and Russell Eberhart. "Particle swarm optimization." Proceedings of ICNN'95- International Conference on Neural Networks. Vol. 4. IEEE, 1995.

Jonas Olsson



N particles. p_1, \ldots, p_N best positions of each particle. p_g - best position of particles in neighbourhood

 c_1 Cognitive - pulls particle towards best position it has had so far c_2 Social - pulls particle towards best position so far of those in its neighbourhood

```
x = rand(N, d)  # positions
v = rand(N, d)  # velocities
p = rand(N, d)  # previous best position
pbest = infinity(N)  # best function value
g = 0  # index of best in neighborhood
```

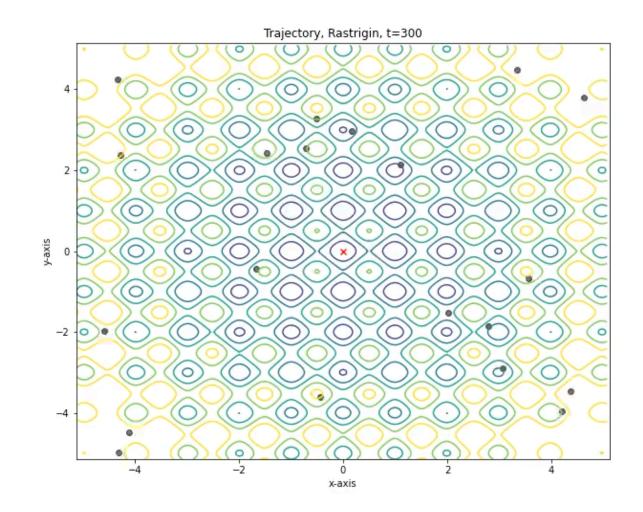
```
# Run some amount of iterations
for t in range(iter):
```

```
# Update all particles
for i in range(N):
```

```
# Check if F at current x is better than previous and update pbest, p.
if F(x[i]) < pbest[i]:
    pbest[i] = F(x[i])
    p[i] = x[i]</pre>
```

```
# Get neighbors and get index of best performing particle
neighbors = get_neighbors(i)
g = best_performer(neighbors)
```

Jonas Olsson

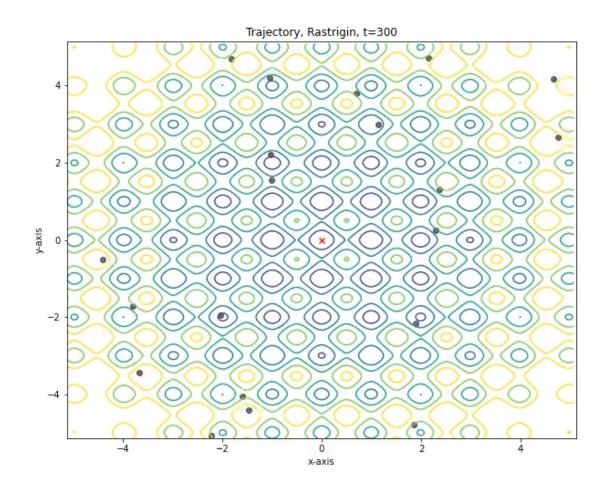


 $c_1 = 1.49618, c_2 = 1.49618$

 c_1 Cognitive - pulls particle towards best position it has had so far

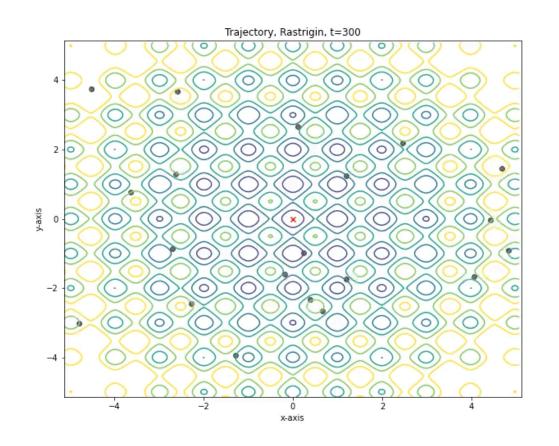
 c_2 Social - pulls particle towards best position so far of those in its neighbourhood

Jonas Olsson



 $c_1 = 0, c_2 = 1.49618$ c_1 Cognitive - pulls particle towards best position it has had so far c_2 Social - pulls particle towards best position so far of those in its neighbourhood

Jonas Olsson



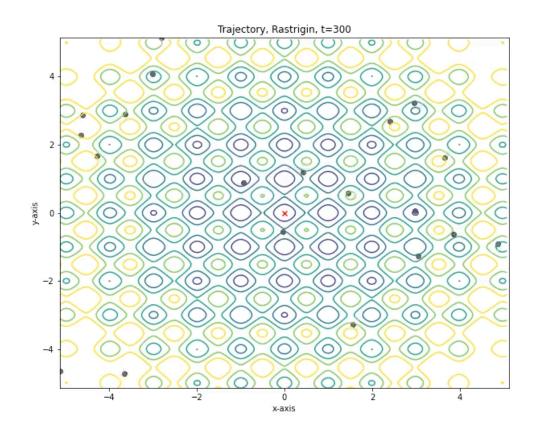
 $c_1 = 1.49618, c_2 = 1.49618, w = 0.7298$

 c_1 Cognitive - pulls particle towards best position it has had so far

 c_2 Social - pulls particle towards best position so far of those in its neighbourhood *w* inertia/constriction/viscosity,

large w - viscosity low, particles move easily - favours global min Small w - viscosity high particles move slower - favours local min

Jonas Olsson



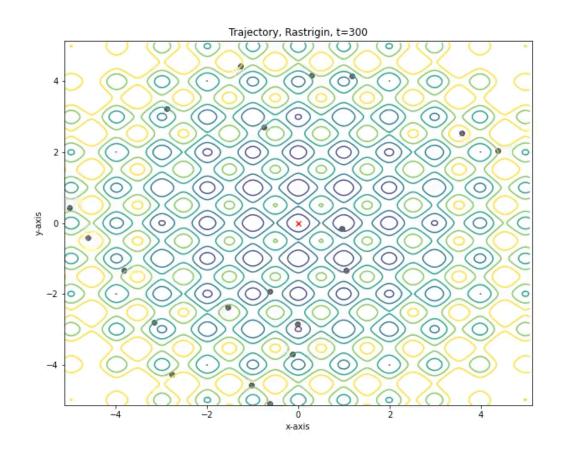
 $c_1 = 0, c_2 = 1.49618, w = 0.7298$

 c_1 Cognitive - pulls particle towards best position it has had so far

 c_2 Social - pulls particle towards best position so far of those in its neighbourhood *w* inertia/constriction/viscosity,

large w - viscosity low, particles move easily - favours global min Small w - viscosity high particles move slower - favours local min

Jonas Olsson



 $c_1 = 1.49618, c_2 = 0, w = 0.7298$

 c_1 Cognitive - pulls particle towards best position it has had so far

 c_2 Social - pulls particle towards best position so far of those in its neighbourhood *w* inertia/constriction/viscosity,

large w - viscosity low, particles move easily - favours global min Small w - viscosity high particles move slower - favours local min