Exercises

- **Exercise 1.** Let \mathcal{A}_{\triangle} be the set of all graphs which contain $\stackrel{\bullet}{\triangle}$ as a subgraph. Fix a constant $0 , and show that <math>\mathbb{P}(G(n, p) \in \mathcal{A}_{\triangle}) \to 1$.
- **Exercise 2.** Prove the following (for the second part it may help to use Chebyshev's inequality: for X be a random variable and t > 0; $\mathbb{P}(|X \mathbb{E}[X]| \ge t) \le \mathbb{V}[X]/t^2$):

Let X_1, X_2, \ldots be a sequence of random variables each taking non-negative integer values. If $\mathbb{E}[X_n] \to 0$ then $\mathbb{P}(X_n = 0) \to 1$,

and if $\mathbb{E}[X_n]>0$ for each n, and $\mathbb{V}[X_n]/(\mathbb{E}[X_n])^2\to 0$ then

$$\mathbb{P}(X_n=0)\to 0.$$

- **Exercise 3.** Show whp $np \to \infty$ implies whp G_n contains \bigstar i.e. a 3-cycle. Let Y_n count the number of \bigstar in G_n and for any 3-subset of vertices $S \subset V(G)$ let A_S be the event that G_n restricted to the vertices S is a \bigstar .
 - (a) Show by linearity of expectation that:

$$\mathbb{V}(Y_n) = \sum_{S,T \in \binom{[n]}{3}} \left(\mathbb{P}(A_S \& A_T) - \mathbb{P}(A_S)\mathbb{P}(A_T) \right)$$

where $\binom{[n]}{3}$ denotes the set of sets of three vertices in the graph.

- (b) After some case analysis and from (a) show: $\mathbb{V}(Y_n) \leq n^4 p^5 + n^3 p^3$.
- (c) From (b) conclude that whp $Y_n > 0$.
- **Exercise 4.** Show that the function $p^*(n) = \frac{1}{n^{2/3}}$ is a threshold for G(n, p) containing \mathbf{X} as a subgraph.
- **Exercise 5.** Given $k \in \mathbb{N}$, let \mathcal{P}_k be the set of graphs which have a path on k vertices as a subgraph.
 - (a) Find the threshold function for \mathcal{P}_3 (notice \mathcal{P}_3 is the set of graphs containing the path \wedge as a subgraph).
 - (b) Find the threshold for \mathcal{P}_4 .
 - (c) Let $k \in \mathbb{N}$ be a constant. Find the threshold for \mathcal{P}_k in terms of k and n.
- **Exercise 6.** We can define an interated majority function for $n = 3^k$. The base case is $\text{Imaj}_1(x_1, x_2, x_3) = \text{Maj}_3(x_1, x_2, x_3)$ and

 $Imaj_{k}(x) = Maj_{3}(Imaj_{k-1}(x_{1}, \dots, x_{3^{k-1}}), Imaj_{k-1}(x_{3^{k-1}+1}, \dots, x_{2\cdot 3^{k-1}}), IMaj_{k-1}(x_{2\cdot 3^{k-1}+1}, \dots, x_{3^{k}})).$ (a) Calculate the influence of the *i*-th bit $I_{i}^{p}(Imaj_{2})$ and total influence $I^{p}(Imaj_{2})$.

- (b) For p = 1/2 calculate $I_i^p(\text{Imaj}_k)$ and $I^p(\text{Imaj}_k)$.
- **Exercise 7.** Suppose \mathcal{A} is non-trivial monotone and let $p_c(n)$ be such that

$$\mathbb{P}(G(n, p_c(n)) \in \mathcal{A}_n) = \frac{1}{2}$$

and then show that for $p_b(n) = 1 - (1 - p_c(n))^k$ we have

$$\mathbb{P}(G(n, p_b(n)) \in \mathcal{A}_n) = 1 - \frac{1}{2^k}$$