Exercises

Exercise 1. Let \mathcal{A}_{\triangle} be the set of all graphs which contain \therefore as a subgraph. Fix a constant $0<p \leq 1$, and show that $\mathbb{P}\left(G(n, p) \in \mathcal{A}_{\triangle}\right) \rightarrow 1$.

Exercise 2. Prove the following (for the second part it may help to use Chebyshev's inequality: for X be a random variable and $\left.t>0 ; \mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq \mathbb{V}[X] / t^{2}\right)$:

Let X_{1}, X_{2}, \ldots be a sequence of random variables each taking non-negative integer values. If $\mathbb{E}\left[X_{n}\right] \rightarrow 0$ then

$$
\mathbb{P}\left(X_{n}=0\right) \rightarrow 1
$$

and if $\mathbb{E}\left[X_{n}\right]>0$ for each n, and $\mathbb{V}\left[X_{n}\right] /\left(\mathbb{E}\left[X_{n}\right]\right)^{2} \rightarrow 0$ then

$$
\mathbb{P}\left(X_{n}=0\right) \rightarrow 0
$$

Exercise 3. Show whp $n p \rightarrow \infty$ implies whp G_{n} contains \therefore i.e. a 3-cycle.
Let Y_{n} count the number of \therefore in G_{n} and for any 3 -subset of vertices $S \subset V(G)$ let A_{S} be the event that G_{n} restricted to the vertices S is a \therefore.
(a) Show by linearity of expectation that:

$$
\mathbb{V}\left(Y_{n}\right)=\sum_{S, T \in\binom{[n])}{3}}\left(\mathbb{P}\left(A_{S} \& A_{T}\right)-\mathbb{P}\left(A_{S}\right) \mathbb{P}\left(A_{T}\right)\right)
$$

where $\binom{[n]}{3}$ denotes the set of sets of three vertices in the graph.
(b) After some case analysis and from (a) show: $\mathbb{V}\left(Y_{n}\right) \leq n^{4} p^{5}+n^{3} p^{3}$.
(c) From (b) conclude that whp $Y_{n}>0$.

Exercise 4. Show that the function $p^{*}(n)=\frac{1}{n^{2 / 3}}$ is a threshold for $G(n, p)$ containing as a subgraph.

Exercise 5. Given $k \in \mathbb{N}$, let \mathcal{P}_{k} be the set of graphs which have a path on k vertices as a subgraph.
(a) Find the threshold function for \mathcal{P}_{3} (notice \mathcal{P}_{3} is the set of graphs containing the path \therefore as a subgraph).
(b) Find the threshold for \mathcal{P}_{4}.
(c) Let $k \in \mathbb{N}$ be a constant. Find the threshold for \mathcal{P}_{k} in terms of k and n.

Exercise 6. We can define an interated majority function for $n=3^{k}$. The base case is $\operatorname{Imaj}_{1}\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{Maj}_{3}\left(x_{1}, x_{2}, x_{3}\right)$ and
$\operatorname{Imaj}_{k}(x)=\operatorname{Maj}_{3}\left(\operatorname{Imaj}_{k-1}\left(x_{1}, \ldots, x_{3^{k-1}}\right), \operatorname{Imaj}_{k-1}\left(x_{3^{k-1}+1}, \ldots, x_{2.3^{k-1}}\right), \operatorname{IMaj}_{k-1}\left(x_{2.3^{k-1}+1}, \ldots, x_{3^{k}}\right)\right)$.
(a) Calculate the influence of the i-th bit $I_{i}^{p}\left(\operatorname{Imaj}_{2}\right)$ and total influence $I^{p}\left(\operatorname{Imaj}_{2}\right)$.
(b) For $p=1 / 2$ calculate $I_{i}^{p}\left(\operatorname{Imaj}_{k}\right)$ and $I^{p}\left(\operatorname{Imaj}_{k}\right)$.

Exercise 7. Suppose \mathcal{A} is non-trivial monotone and let $p_{c}(n)$ be such that

$$
\mathbb{P}\left(G\left(n, p_{c}(n)\right) \in \mathcal{A}_{n}\right)=\frac{1}{2}
$$

and then show that for $p_{b}(n)=1-\left(1-p_{c}(n)\right)^{k}$ we have

$$
\mathbb{P}\left(G\left(n, p_{b}(n)\right) \in \mathcal{A}_{n}\right)=1-\frac{1}{2^{k}}
$$

