
Random Graphs, Thresholds and Phase transitions

We give an example of the sort of question we will look at. Let A4 be the set of all graphs which
contain 4 as a subgraph, i.e. all graphs G which contain a set of three vertices {u, v, w} ∈ V (G)
such that uv, uw, vw ∈ E(G). Let the random graph G(n, p) be the graph with vertex set
[n] = 1, 2, ..., n in which each possible edge ij, 1 ≤ i < j ≤ n, is present with probability p,
independently of the others.

We are interested in how the probability that G(n, p) contains a triangle changes for different
values of p. Write µp(A4, n) for the probability that the random graph G(n, p) has a trian-
gle. Clearly, for any n, µ0(A4, n) = 0 and for n ≥ 3, µ1(A4, n) = 1. One can also show
that for p ≤ p′, µp(A, n) ≤ µp′(A, n). For edge probability p = p(n), we investigate the be-
haviour of µp(n)(A4, n) as n→∞. We will find that for p(n) and p′(n) ‘not too far apart’ that
µp(n)(A4, n)→ 0 while µp′(n)(A4, n)→ 1 a sort of a ‘phase transition’ in the behaviour. These
ideas will be made precise in this course as we investigate how ‘fast’ such phase transitions can
occur. Material covered to include some theory of Boolean functions and the Margulis-Russo
formula.

Lecture 1: Random Graphs and Thresholds

Random Graphs

For this lecture and the next we focus on a particular case of boolean analysis: graphs.

Define a graph G = (V,E) to be a set of labelled vertices [n] = {1, 2, . . . , n} and set of two-subsets
of vertices E which we call edges. Write e(G) for the number of edges |E|. Technically the edge
between vertices i and j should be denoted {i, j} but we will use the standard shorthand ij or ji
interchangably. We do not allow loops which are edges with both end points at the same vertex
or multiple edges namely each pair of vertices has either zero or one edges between them). (Our
graphs are undirected but it is possible to define directed graphs where each edges has a direction
associated with it and ij 6= ji.)

Each graph G = ([n], E) can be associated with a boolean vector x ∈ {0, 1}(
n
2), identify the

(
n
2

)
positions in the vector x with the set of pairs of vertices in [n] and each edge e ∈ E is recorded by
xe = 1 and each non-edge by xe = 0. For example (where vertex labels are always anticlockwise

starting from bottom left e.g. 1 2
3

and the edges listed in lexicographic order e.g. (12, 13, 23)

and (12, 13, 14, 23, 24, 34)) the graph corresponds to vector (0, 1, 1), likewise to (1, 0, 0) and
graph to (0, 1, 1, 1, 1, 1).

Given an integer n and a real number 0 ≤ p ≤ 1, the random graph G(n, p) is the graph with
vertex set [n] = 1, 2, ..., n in which each possible edge ij, 1 ≤ i < j ≤ n, is present with probability
p, independently of the others. The notation G(n, p) indicates the probability space of graphs on
[n] with the probabilities above. We write G ∼ G(n, p) or to mean that G is a random graph with
this distribution. For a graph H on n vertices we write µp(H) = µp(H,n) for P(G(n, p) = H)
and for a set of graphs on n vertices, A, write µp(A) = µp(A, n) for P(G(n, p) ∈ A).
For any given graph H on [n], the probability of H depends only on the number of edges in H,

P(G(n, p) = H) = pe(H)(1− p)(
n
2)−e(H).

In the special case that p = 1/2, then all
(
n
2

)
graphs on vertex set [n] are equally likely.
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Example As an example consider the probability space G(3, p) where the set of possible graphs
is { , , , , , , , }. (Note that because the graphs are labelled 6= .) If we sam-
ple a graph H ∼ G(3, p) then H is with probability p3, for each of , , the probability
is p2(1 − p), for each of , , the probablity is p(1 − p)2 and finally for the probability
is (1− p)3.

To study properties of random graphs we need a couple more notions from graph theory. We
say that graphs H and G are isomorphic, denoted H ≈ G if there is a bijective function
φ : V (H) → V (G) such that uv ∈ E(H) if and only if φ(u)φ(v) ∈ E(G). For example ≈
and ≈ ≈ . Similarly, we say that graph H is a subgraph of graph G, denoted H ⊆ G if
there is an injective function φ : V (H) → V (G) such that if uv ∈ E(H) then φ(u)φ(v) ∈ E(G).
For example ⊆ ⊆ ⊆ but 6⊆ .

We also define some isomorphism classes of graphs. A graph G is a path on n vertices, denoted
Pn, if its vertices can be (re)-labelled v1, . . . , vn such that E(G) = {vivi+1 : i ∈ [n − 1]}. For
example a path on 2 vertices is and there are three paths on three vertices is , , . A graph
G with n ≥ 3 vertices, denoted Cn, is a cycle if its vertices can be (re)-labelled v1, . . . , vn such
that E(G) = {vivi+1 : i ∈ [n]} where the subscript addition is taken modulo n. For example a
cycle on 3 vertices is and there are three cycles on four vertices , , . A graph G is the
complete graph on n vertices, denoted Kn, if uv ∈ E(G) for all u, v ∈ V (G). A graph G is the
empty graph on n vertices, denoted Kn, if E(G) = ∅. For example K4 = and K4 = .

Thresholds in Random Graphs

We give an example of the sort of question we will look at. Let A4 be the set of all graphs which
contain as a subgraph, i.e. all graphs G which contain a set of three vertices {u, v, w} ∈ V (G)
such that uv, uw, vw ∈ E(G). We are interested in how the probability that G(n, p) constains
a triangle changes for different values of p. Clearly, for any n, µ0(A4, n) = 0 and for n ≥ 3,
µ1(A4, n) = 1. One can also show that for p ≤ p′, µp(A, n) ≤ µp′(A, n). For edge probability
p = p(n), we investigate the behaviour of µp(n)(A4, n) as n → ∞. We will find that for p(n)
and p′(n) ‘not too far apart’ that µp(n)(A4, n) → 0 while µp′(n)(A4, n) → 1 a sort of a ‘phase
transition’ in the behaviour. These ideas will be made precise in this course as we investigate
what are called monotone properties of graphs.

Definition 1.1 (monotone). A set of graphs A is monotone if H ∈ A and H ⊆ G implies
that G ∈ A.

A function from f : {0, 1}n → R is monotone if f(x) ≥ f(y) whenever x ≥ y i.e. for
each i xi ≥ yi.

Examples of monotone sets of graphs include the set of graphs containing as a subgraph, the
set of connected graphs (graphs which have a path along edges between any pair of vertices)
and the set of all non-planar graphs (i.e. those that can’t be drawn in the plane without edges
crossing). Non-examples include the set of graphs with an odd number of edges and the set of

-free graphs (those graphs not containing as a subgraph).

Theorem 1.2. For any monotone set of graphs A and p′ > p,

P(G(n, p) ∈ A) ≤ P(G(n, p′) ∈ A)

Proof. Define p1 ∈ [0, 1], by p + (1 − p)p1 = p′. Let G ∼ G(n, p) and G1 ∼ G(n, p1) and define
the random graph G2 = G ∪ G1, (this is the graph ([n], E(G) ∪ E(G1)). Now each edge in G2
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occurs independently with probability p+ (1− p)p1 = p′ and hence G2 ∼ G(n, p′). Now because
A is monotone

P(G ∈ A) ≤ P(G ∪G1 ∈ A) = P(G2 ∈ A).

Definition 1.3 (threshold). The function p∗ = p∗(n) is a (coarse)1 threshold for mono-
tone A if P(G(n, p) /∈ A)→ 1 for p/p∗ → 0 and P(G(n, p) ∈ A)→ 1 for p/p∗ →∞.

Observe that if p∗ is a threshold for A then 8p∗ is also a threshold. We give some examples of
monotone graph properties and their threshold functions.

graph property threshold p∗(n)

contains n−3/2

contains cycle n−1

contains 4 n−1

non-planar n−1

connected n−1 log n
contains n−2/3

Threshold for a random graph containing a cycle

For a series of events E1, E2, . . . we say that En occurs with high probability, abbreviated whp, if
P(En)→ 1 as n→∞.

Theorem 1.4. Let A◦ be the set of graphs which contain a cycle as a subgraph then the function
p∗ = 1

n is a threshold for A◦.

Proof. Let p = p(n) be any function such that p/p∗ → 0, i.e. such that np → 0. Now sample
the random graph Gn ∼ G(n, p). We want to show that whp Gn does not contain a cycle as a
subgraph.

Let Xn = Xn(Gn) be the random variable which counts the number of cycles in Gn. For example
the number of cycles in the following graphs is #( ) = 1, #( ) = 0 and lastly #( ) = 3 as
the graph contains two s and the 4-cycle .

The probability that Gn has a cycle is at most the expectation of Xn:

P(Gn has a cycle) = P(Xn > 0) =
∑
k=1

P(Xn = k) ≤
∑
k=0

kP(Xn = k) = E(Xn),

and so it will be enough to show that E(Xn)→ 0 as n→∞.

Let S be the set of all places in the graph where a cycle could occur. Explicitly, Sk is the set
of all subsets of k vertices ordered up to rotation and orientation of the cycle and S = ∪k≥3Sk.
For S ∈ S define AS to be the event that a cycle occurs on S in the random graph Gn. As
expectation is linear,

E(Xn) =
∑
S∈S

E(1AS
) =

∑
k≥3

∑
S∈Sk

P(AS) (1)

1The function p∗ = p∗(n) is a sharp threshold for monotone A if P(G(n, p) /∈ A) → 1 for p < (1 − ε)p∗ and
P(G(n, p) ∈ A)→ 1 for p > (1 + ε)p∗.

4



For S ∈ Sk the probability that a cycle occurs on S is pk as we need each of the k independent
edges which form the cycle to be present in our random graph. We want to know |Sk|. The
number of ordered sets of size k is

(
n
k

)
k! - which overcounts each S ∈ Sk by 2k times. Why 2k?

Once for each starting position on the cycle (×k), and once for each direction of the cycle (×2).
Hence2 Sk =

(
n
k

)
k!/(2k) =

(
n
k

)
(k − 1)!/2. Thus by (1),

E(Xn) =
∑
i≥3

(
n

k

)
(k − 1)!

2
pk.

Now note that
(
n
i

)
i! = n(n− 1) . . . (n− i+ 1) ≤ ni and we get

E(Gn) ≤
∑
k≥3

nkpk =
n3p3

1− np
,

which so E(Xn) goes to zero for np → 0. Hence as P(Gn has a cycle) ≤ E(Xn) we have proven
that whp Gn has no cycle, i.e. whp Gn /∈ A◦ for p/p∗ → 0.

For the second part of the proof we need to show that whp Gn ∈ A◦ for np → ∞. Recall
(Q 2a) that any graph on n vertices with at least n edges must contain a cycle. We show that
for p = 3/n whp the number of edges in G(n, p) is at least n. By Theorem 1.2 this implies for
p ≥ 3/n that whp G(n, p) contains a cycle as required.

LetGn ∼ G(n, 3/n) and write Yn for the number of edges inGn. Notice Yn =
∑

1≤i<j≤n 1ij∈E(Gn)

is the sum of
(
n
2

)
independent random variables each of which is 1 with probability p = 3/n and 0

with probability 1 − p. Thus Y has the binomial distribution3 of bin(
(
n
2

)
, p) with expectation

E(Yn) =
(
n
2

)
p and variance V(Yn) =

(
n
2

)
p(1− p).

The expected number of edges is E(Yn) =
(
n
2

)
3
n = 3n

2 (1− 1
n ). For n > 9 if | 3n2 (1− 1

n )− a| < n/3
then a > n. Hence to show that whp the number of edges is at least n it is sufficient to show
that whp |E(Yn)− Yn| < n/3. But we can do this using Chebyshev’s inequality

P(|E(Yn)− Yn| ≥ n/3) ≤ V(Yn)

(n/3)2
=

33

2n

(
1− 1

n

)(
1− 3

n

)
→ 0.

Hence whp e(Gn) ≥ n and (consequently) whp Gn contains a cycle for np→∞.

2For the purpose of the proof it would be enough to establish that Sk ≤
(n
k

)
k!.

3There are many ways to calculate the expectation and variance of the binomial random variable bin(t, p) and
this is not part of the course but for completeness we write out one method below.

For any random variable taking values in {0, 1, . . . , t}, one can construct the polynomial (known as the
probability generating function of X), f(x) =

∑t
i=1 P(X = k)xk and note that f ′(x)

∣∣
x=1

= E(X) and

f ′′(x)
∣∣
x=1

= E(X(X − 1)).

Hence for the random variable Y with distribution bin(t, p) the probability generating function is f(x) =∑t
i=1

(t
k

)
pk(1− p)t−kxk = (px− (1− p))t which means

f ′(x))
∣∣
x=1

= tp(x+ (1− p))t−1)
∣∣
x=1

= np,

and
f ′′(x))

∣∣
x=1

= t(t− 1)p2(x+ (1− p))t−2)
∣∣
x=1

= t(t− 1)p.

Thus E(Y ) = tp and the variance is

V(Y ) = E(Y (Y − 1)) + E(Y )− E(Y 2) = t(t− 1)p2 + np− t2p2 = tp(1− p).
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Influence and Thresholds

In our work on random graphs we have been interested in finding the thresholds for monotone
sets of graphs. This has meant an analysis of the function µp(A) = P(G(n, p) ∈ A). For non-
trivial sets of graphs A, the function satisfied µ0(A) = 0 and µ1(A) = 1 and for monotone
A this function satisfies µp′(A) ≥ µp(A) for p′ ≥ p. In this section we continue our study of
this function µp(A). We will prove the Russo-Margulis lemma which allows us to calculate the
derivate d

dpµp(A), i.e. the rate of change of the probability that a random graph Gn ∈ A as we

change the edge probability p in Gn ∼ G(n, p). We will see that this derivative can be calcu-
lated in terms of what is called the influence of A which is an interesting property in its own right.

For this section we work in the general setting of a probability space over {0, 1}n.

We take the probability space Ωn on {0, 1}n where each bit is chosen to be 1 independently with
probability p (otherwise 0). For any event An ⊂ {0, 1}n we write µp(An) to be the probability
that a randomly chosen x ∈ {0, 1}n lies in the set A. We write µp(x) to denote the probability
of the event A = {x}, notice

µp(x) = p
∑

i xi(1− p)n−
∑

i xi ,

and
µp(An) =

∑
x

µp(x).

Recall that any vector x ∈ F(n
2)

2 can be associated with a graph on n vertices: identify the
(
n
2

)
positions in the vector x with the set of pairs of vertices in [n] and for each co-ordinate in x,
xe = 1 indicates that the edge e is present in the graph. Take the convention the graph is

drawn with vertex labels increasing anticlockwise starting from bottom left e.g. 1 2
3

and that

edges listed in lexicographic order e.g. (12, 13, 23) and (12, 13, 14, 23, 24, 34)). Now the graph
corresponds to vector (0, 1, 1), likewise to (1, 0, 0) and graph to (0, 1, 1, 1, 1, 1). Hence the
probability space defined includes the subcase of random graphs.

In this more general context the definitions of monotone carries over in the way you would
expect4. We also define monotone functions.

Definition 1.5 (monotone). A function f is monotone, if f(x) ≥ f(y) whenever x ≥ y
(i.e. xi ≥ yi for each i). A set An ∈ {0, 1}n is monotone if its indicator function
fn = 1An

is a monotone function. i.e. fn(x) = 1 if x ∈ A and fn(x) = −1 if x /∈ A.

In the language of voting schemes we want to say a voter has high influence if they are likely
to be able to determine the outcome when we assume the rest of the popultion vote randomly.
It will be on a scale of 0 to 1, where influence of 0 means they have no chance of their vote
‘counting’ and influence of 1 meaning that whatever the rest of the population vote the outcome
would changed by the voter casting a different vote.

Definition 1.6 (pivotal). Given a function f : {0, 1}n → R and i ∈ [n] we say that i is
pivotal for x if f(x) 6= f(x⊕ i). For a set A ⊂ {0, 1}n we say i is pivotal for x if it is
pivotal for its indicator function 1A.

For the n-bit vector x = (x1, . . . , xn) write x\{xi} for the (n−1)-bit vector (x1, . . . , xi−1, xi+1, . . . , xn).

4The definition of non-trivial does too. A monotone set An ∈ Fn
2 is non-trivial if ∃N such that ∀n > N , the

n-vectors 0 and 1 satisfy (0, 0, . . . , 0) /∈ An and (1, 1, . . . , 1) ∈ An.
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Definition 1.7 (influence of i-th bit, total influence). The influence of the i-th bit of
a function f , is the probability that for a randomly chosen x\{xi} changing the i-th
co-ordinate of x changes f .

Ipi (f) = µp({x : x 6= f(x⊕ i)}).

The influence of i-th bit of a set A is the influence of f = 1A. The total influence is
the sum over all co-ordinates Ip(f) =

∑
i I
p
i (f).

Notice that for a monotone set A the influence of the i-th bit is

Ipi (A) = µp({x : (x1, . . . , xi−1, 0, xi, . . . , xn} /∈ A & (x1, . . . , xi−1, 1, xi, . . . , xn} ∈ A}).

Example: In the parity function each co-ordinate has influence 1. For the dictator function
f = Dict1(f) the first co-ordinate has influence 1 the others have influence 0.
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Lecture 2: Influence and Fourier analysis

Recap and influence of a set

We work with random strings of length n where we choose x ∈ {0, 1}n by letting each bit
independently be ’1’ with probability p and ’0’ with probability 1 − p. Equivalently - for x ∈
{0, 1}n, set µp(x) = p

∑
i xi(1− p)n−xi and for A ⊂ {0, 1}n set

µp(A) =
∑
x∈A

µp(x) =
∑

x∈{0,1}n
1A(x)µp(x).

We will be interested in monotone non-trivial An ⊂ {0, 1}n. To recap An is monotone if x ≤ y
and x ∈ An together imply y ∈ An. Recall that for x, y ∈ {0, 1}n we say x ≤ y if for each i,
xi ≤ yi. Also to recap An is non-trivial if An 6= ∅ and An 6= {0, 1}n.

By yesterdays lecture we know for monotone non-trivial An that µ0(An) = 0, µ1(An) = 1 and
for p′ ≥ p µp′(An) ≥ µp(An). Observe that for fixed n and each x ∈ {0, 1}n µp(x) is a polynomial
in p with degree at most

(
n
2

)
, so µp(A) is also a polynomial in p with degree at most

(
n
2

)
. In

particular for fixed n µp(A) is continuous and differentiable. Intuitively value d
dpµp(A) gives in-

sight into how close together we may take p and p′ so that µp(An) is near 0 and µp′(An) is near 1.

Recall also the influence of a function at co-ordinate i was defined be Ipi (f) = µp({x : f(x) 6=
f(x ⊕ i)}) and total influence Ip(f) =

∑
i I
p
i (f). Similarly define the influence of a set An ∈

{0, 1}n at co-ordinate i to be

Ipi (A) = µp({x : (x ∈ A and x⊕ i /∈ A) or (x /∈ A and x⊕ i ∈ A)})

and the total influence to be Ip(An) =
∑
i I
p
i (An).

Rate of change of monotone events bounded above by influence

Lemma 2.8 (Russo-Margulis). Let A ∈ {0, 1}n be a monotone event. Then

d µp(A)

dp
= Ip(A).

Proof. We consider the slightly more general case where each bit xi is chosen to be ‘1’ inde-

pendently with probability pi, writing I
(p1,...,pn)
i (A) for the influence of the i-th bit, i.e. the

probability that the i-th bit is influential given bits x1, . . . , xi−1, xi+1, . . . , xn are chosen to be
‘1’ independently with probabilities p1, . . . , pi−1, pi+1, . . . , pn respectively.

Hence it will suffice to show that

dµ(p1,...,pn)(A)

dpi
= I

(p1,...,pn)
i p(A),

WLOG take i = 1. Now, let X ∈ Fn−12 and Y ∈ Fn−12 be defined as follows,

X = {(x2, . . . , xn) : f(0, x2, . . . , xn) = 1 and f(1, x2, . . . , xn) = 1}.

Y = {(x2, . . . , xn) : f(0, x2, . . . , xn) = −1 and f(1, x2, . . . , xn) = 1}.

We can express the probability of the event A in terms of X and Y ,

µ(p1,...,pn)(A) = µ(p2,...,pn)(X) + µp1(x1 = 1)µ(p2,...,pn)(Y ).
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Note that Y is the pivotal set for f , and hence P(p2,...,pn)(Y ) = Ip1 (f) and so

P(p1,...,pn)(A) = P(p2,...,pn)(X) + p1I
p
1 (f).

Now take the derivative of P(p1,...,pn)(A) with respect to p1 and we are done.

Fourier

From now on we consider only the case p = 1/2 so each n-bit string is equally likely. We intro-
duce the notions of fourier coefficients and characters in two different ways.

Intro 1 Begin by defining an inner product. For f, g : {0, 1}n → {−1, 1} define

< f, g >= 2−n
∑

x∈{0,1}n
f(x)g(x) = E1/2(fg)

We claim that there is a set {χS(x)}S⊂[n] form an orthonormal basis. Assuming the claim we

can then write f(x) =
∑
S⊂[n] f̂(S)χS(x) where f̂(S) =< f, χS >. The (̂f)(S) we call the fourier

coefficients. It remains to prove the claim.

For S ⊂ [n] define χS : {0, 1}n → {−1, 1} by

χS(x) = (−1)
∑

i∈S .

One can check that χS(x)χT (x) = χS4T (x) (where S4T is the set difference (S\T ) ∪ (T\S).)
Now for S = T the set difference is empty so

< χS , χS >= 2−n
∑

x∈{0,1}n
(−1)

∑
j∈∅ xj = 1.

For S 6= T , let i ∈ S4T and we will split the sum over x ∈ {0, 1}n into those x for which xi = 0
and those x for which xi = 1 and see these sums cancel.

< χS , χT >= 2−n
( ∑
x∈{0,1}n: xi=0

(−1)0(−1)
∑

j∈S4T\{i} xj+
∑

x∈{0,1}n: xi=0

(−1)−1(−1)
∑

j∈S4T\{i} xj

)
= 0.

and hence we have that {χS(x)}S⊂[n] form an orthonormal basis as claimed.

Intro 2 We make a sequence of rearrangements which arrive at the same result. First let 1=x(y)
be ’1’ if x = y and ’0’ otherwise. Then we may write

f(x) =
∑

y∈{0,1}n
f(y)1=x(y). (2)

Now note that because f takes only values −1 and 1 we get

1=x(y) =

n∏
i=1

1=xi
(yi) =

n∏
i=1

(
1 + (−1)xi+yi

2

)
.

And thus,

1=x(y) =
1

2n

∑
A⊂[n]

(−1)
∑

i∈A xi+yi . (3)
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The last step is from expanding out the brackets (the set A corresponds to the term where for
i /∈ A take the ’1’ from i-th bracket and for i ∈ A we take the (−1)xi+yi term from the i-th
bracket. But now by (2) and (3) we may write our function f(x) as

f(x) =
∑

y∈{0,1}n
f(y)1=x(y) =

∑
A⊂[n]

(
1

2n

∑
y∈{0,1}n

f(y)(−1)
∑

i∈A yi

︸ ︷︷ ︸
f̂(A)

)(
(−1)

∑
i∈A xi︸ ︷︷ ︸

χA(x)

)
.

and we have the same fourier decomposition as earlier.
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Lecture 3: Influence and Fourier analysis

The first half of this lecture we revise Fourier notions introduced yesterday and in the second bit
we show a result bounding the derivative of µp(An) for monotone A.

We pause and do a small in-lecture exercise to help internalise the definitions (if you are reading
this you should pause and do this exercise too, answers in the footnote5).

Exercise -1. For each of the following boolean functions f : {0, 1}n → {−1, 1}, aka voting
schemes, find a set S such that the function is expressible in terms of that character,
i.e. f(x) = χS(x) or f(x) = −χS(x).

(a) The dictator function, Dict1(x) = 1 if x1 = 1 and Dict1(x) = −1 if x1 = 0.

(b) The parity function, Par(x) = 1 if
∑
i xi is odd and Par(x) = −1 if

∑
i xi is even.

(c) The XOR function of the first two inputs defined by XOR{1,2} = 1 if x1 6= x2 and
XOR{1,2} = −1 if x1 = x2.

(d) The constant function f(x) = 1.

We also pause to show the following.

Exercise 0. For f : {0, 1}n → {−1, 1} show

(a) the expectation satisfies E1/2(f) = f̂(∅) and

(b) the variance satisfies V1/2(f) =
∑
S 6=∅ f̂(S)

We now make a pagebreak and then write out the answers to Exercise 0 to give the reader a
chance to the exercise themselves.

5The functions can be written characters or their negatives as: (a) −χ{1}(x), (b) −χ[n](x), (c) −χ{1,2}(x)
and (d) χ∅(x).
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Exercise 0. For part (a), observe that χ∅(x) = 1 for all x. Thus (all sums over x ∈ {0, 1}n) we

get E1/2(f) = 2−n
∑
x f(x) · 1 = 2−n

∑
x f(x) · χ∅(x) = f̂(∅).

For the variance in part (b) first calculate E(f2)

E(f2) = 2−n
∑
x

(∑
S

f̂(S)χS(x)

)(∑
T

f̂(T )χT (x)

)
=
∑
S,T

f̂(T )f̂(S) 2−n
∑
x

χS(x)χT (x)︸ ︷︷ ︸
<χS ,χT>

and hence because {χS}S form an orthonormal basis we have E(f2) =
∑
S f̂(S)2. And so we are

done by part (a).

We record one last property we will need. Observe that for f : {0, 1} → {−1, 1} we have
f(x)2 = 1 for all x. So in particular E(f2) = 1. Thus by our calculations in the exercise we get
the following usually called Parseval’s identity.∑

S

f̂(S)2 = 1.

We may now prove the following.

Theorem 3.9. For a monotone A ⊂ {0, 1}n,

d

dp
µp(A)∣∣p=1/2

≤
√
n.

Proof. By the Margulis-Russo result it is equivalent to show that for any monotone A ⊂ {0, 1}n
the total influence of A at p = 1/2 satisfies

I1/2(A) ≤
√
n.

We define a function f : {0, 1}n → {−1, 1} which acts a little like the indicator for A by

f(x) =

{
1 if x ∈ A
−1 if x /∈ A.

Notice A a monotone set implies that f is a monotone function. This monotonicity of f is
important. For any y ∈ {0, 1}n and i ∈ [n] then f(y ⊕ i) 6= f(y) if and only if

f(y1, . . . , yi−1, 1, yi+1, . . . , yn) = 1 and f(y1, . . . , yi−1, 0, yi+1, . . . , yn) = −1.

We are nearly ready to start the calculations of the proof. But first we recall the behaviour of a
particular character in fourier analysis.

χ{i}(y) = (−1){i}·y =

{
1 if yi = 0

−1 if yi = 1.

Now we can begin the calculations. The game plan is to relate f̂({i}) to the influence of f .

f̂({i}) =
1

2n

∑
y∈{0,1}n

f(y)χ{i}(y) =
1

2n

∑
y∈{0,1}n

f(y)(1yi=0(y)− 1y1=1(y)) (4)

Notice in (4) the second equality follows by writing out χ{i}(y) in terms of the indicator func-
tions 1yi=0(y) and 1yi=1(y). We can now expand out the sum in (4) to get that

12



f̂({i}) =
1

2n

∑
y\{yi}∈{0,1}n−1

f(y1, . . . , yi−1, 0, yi+1, . . . , yn} − f(y1, . . . , yi−1, 1, yi+1, . . . , yn}. (5)

The equation (5) rearranges nicely. If f(y) = f(y ⊕ i) then f(y1, . . . , yi−1, 0, yi+1, . . . , yn} −
f(y1, . . . , yi−1, 1, yi+1, . . . , yn} = 0 or if f(y) 6= f(y ⊕ i) then f monotone implies we have
f(y1, . . . , yi−1, 0, yi+1, . . . , yn} − f(y1, . . . , yi−1, 1, yi+1, . . . , yn} = −2. The number of times this
difference of two will be recorded in (5) is half the number of such y.

f̂({i}) =
1

2n
× (−2)× (|{y : f(y) 6= f(y ⊕ i)}|/2) = − 1

2n
|{y : f(y) 6= f(y ⊕ i)}| (6)

We have now written f̂({i}) in terms of the influence of the i-th bit. Notice that (6) calculates
the probability of picking a y (under p = 1/2) such that f(y) 6= f(y ⊕ i). Hence,

f̂({i}) = −I
1
2
i (f). (7)

Now apply some fourier analysis. By a Corollary of Parseval (see notes from first part of course)∑
S f̂(S)2 = 1. We also recall the Cauchy-Schwarz inequality for real a1, . . . an, b1, . . . , bn which

says (
∑
i aibi)

2 ≤ (
∑
i a

2
i )(
∑
i b

2
i ) i.e.

∑
i b

2
i ≥ (

∑
i aibi)

2/(
∑
i a

2
i ). Then (taking ai = 1 and

bi = f̂({i}) to apply Cauchy-Shwartz in the second inequality),

1 =
∑
S

f̂(S)2 ≥
∑
i∈[n]

f̂({i})2 ≥ 1

n
(
∑
i

f̂({i}))2 =
1

n
(
∑
i

I
1
2
i (f))2 =

1

n
(I(f))2. (8)

This, (8), is exactly what we want. It says I(f) ≤
√
n.

Observe that the monotone condition is necessary. If we allow any possible set A then we could
take A = {x

∑
i xi is even }, i.e. so that f = 1A is the parity function which has influence n.

We will also see that the lower bound in the theorem is tight up to constatnts. In this next
example we show that the majority function, which is monotone, has total influence of Θ(

√
n).

For this calculation we need stirling’s formula which gives the approximate growth rate of the
factorial function: n! =

√
2πn

(
n
e

)n
(1 +O (1/n)).

Example 3.10 (Influence of Majority). For odd n, denote by Majn the function that

returns 1 if more 1’s than 0’s in x and −1 otherwise. We show I
1
2 (Majn) = Θ(

√
n).

As all co-ordinates have the same influence it is enough to show the influence of the

first co-ordinate is what we want, i.e. I
1
2
1 (Majn) = Θ( 1√

n
).

Recall that x⊕1 denotes the vector x after the first co-ordinate has been flipped (e.g.
(1, 1, 0)⊕ 1 = (0, 1, 0)).

I
1
2
1 (Majn) = µ 1

2
({x : f(x⊕ 1) 6= f(x)})

=
1

2n
|{x : f(x⊕ 1) 6= f(x)}|

=
1

2n−1
{(x2, . . . , xn) : exactly half the xi are 1 })

=
1

2n−1

(
n− 1
n−1
2

)
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We can now substitute our bound on the middle binomial, everything cancels (except
the desired square root) and we are finished the calculation. (The m above being
(n− 1)/2, note that n odd guarantees that this is an integer).

I
1
2
1 (Majn) =

1

2n−1

(
n− 1
n−1
2

)
= Θ

(
1

2n−1
4

n−1
2

1√
n

)
= Θ

(
1√
n

)
.

14



Exercises

Exercise 1. Let A4 be the set of all graphs which contain as a subgraph. Fix a constant
0 < p ≤ 1, and show that P(G(n, p) ∈ A4)→ 1.

Exercise 2. Prove the following (for the second part it may help to use Chebyshev’s in-
equality: for X be a random variable and t > 0; P(|X − E[X]| ≥ t) ≤ V[X]/t2):

Let X1, X2, . . . be a sequence of random variables each taking non-negative integer
values. If E[Xn]→ 0 then

P(Xn = 0)→ 1,

and if E[Xn] > 0 for each n, and V[Xn]/(E[Xn])2 → 0 then

P(Xn = 0)→ 0.

Exercise 3. Show whp np→∞ implies whp Gn contains i.e. a 3-cycle.
Let Yn count the number of in Gn and for any 3-subset of vertices S ⊂ V (G) let
AS be the event that Gn restricted to the vertices S is a .

(a) Show by linearity of expectation that:

V(Yn) =
∑

S,T∈([n]
3 )

(
P(AS & AT )− P(AS)P(AT )

)

where
(
[n]
3

)
denotes the set of sets of three vertices in the graph.

(b) After some case analysis and from (a) show: V(Yn) ≤ n4p5 + n3p3.

(c) From (b) conclude that whp Yn > 0.

Exercise 4. Show that the function p∗(n) = 1
n2/3 is a threshold for G(n, p) containing

as a subgraph.

Exercise 5. Given k ∈ N, let Pk be the set of graphs which have a path on k vertices as a
subgraph.

(a) Find the threshold function for P3 (notice P3 is the set of graphs containing the path
as a subgraph).

(b) Find the threshold for P4.

(c) Let k ∈ N be a constant. Find the threshold for Pk in terms of k and n.

Exercise 6. We can define an interated majority function for n = 3k. The base case is
Imaj1(x1, x2, x3) = Maj3(x1, x2, x3) and

Imajk(x) = Maj3(Imajk−1(x1, . . . , x3k−1), Imajk−1(x3k−1+1, . . . , x2.3k−1), IMajk−1(x2.3k−1+1, . . . , x3k)).

(a) Calculate the influence of the i-th bit Ipi (Imaj2) and total influence Ip(Imaj2).

(b) For p = 1/2 calculate Ipi (Imajk) and Ip(Imajk).

Exercise 7. Suppose A is non-trivial monotone and let pc(n) be such that

P(G(n, pc(n)) ∈ An) =
1

2

and then show that for pb(n) = 1− (1− pc(n))k we have

P(G(n, pb(n)) ∈ An) = 1− 1

2k
.
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Sketches/solutions for some of the exercises.

Exercise 1. Let A4 be the set of all graphs which contain as a subgraph. Fix a constant
0 < p ≤ 1, and show that P(G(n, p) ∈ A4)→ 1.

Solution: Group the vertices into n/3 sets of three. Now for the random graph to have no
triangles, in particular, each group of three must not induce a triangle. For any fixed set of three
vertices there is a p3 chance that there is a triangle. Thus calculating the probability that there
is no triangle in the graph we get P(G(n, p) /∈ A4) ≤ (1− p3)n/3 → 0.

Exercise 2. Prove the following (for the second part it may help to use Chebyshev’s in-
equality: for X be a random variable and t > 0; P(|X − E[X]| ≥ t) ≤ V[X]/t2):

Let X1, X2, . . . be a sequence of random variables each taking non-negative integer
values. If E[Xn]→ 0 then

P(Xn = 0)→ 1,

and if E[Xn] > 0 for each n, and V[Xn]/(E[Xn])2 → 0 then

P(Xn = 0)→ 0.

Exercise 3. Show whp np → ∞ implies whp Gn contains i.e. a 3-cycle. Let Yn count
the number of in Gn and for any 3-subset of vertices S ⊂ V (G) let AS be the
event that Gn restricted to the vertices S is a .

Solution: The solution follows in a similar way to the threshold calculations of for which we
give a full solution.

Exercise 4. Show that the function p∗(n) = 1
n2/3 is a threshold for G(n, p) containing

as a subgraph.

Solution:
Let p be such that p/p∗ → 0, i.e. n2/3p → 0 and let Gn ∼ G(n, p). Let Yn = Yn(Gn) count the
number of in Gn. For each set S of 4 vertices from [n], let AS be the event that Gn restricted
to the vertices S is a . We can write Yn in terms of these indicator random variables.

Yn =
∑

S∈([n]
4 )

1AS

As expectation is linear, the expected number of in Gn is

E(Yn) =
∑

S∈([n]
4 )

E(1AS
) ≤ n4p6 = (n2/3p)6.

Hence E(Yn)→ 0 for n2/3p→ 0. Observe P(Gn contains a ) = P(Yn > 0) ≤ E(Yn) and so for
n2/3p→ 0 whp Gn does not contain as a subgraph.

Now it remains to show that for p/p∗ →∞, i.e. for n2/3p→∞ that whp Gn ∼ G(n, p) contains
a . For this part of the proof we calculate the variance of Yn by writing Yn =

∑
S 1AS

and
expanding. Write

∑
S for

∑
S∈([n]

4 ).

V(Yn) = E(Y 2
n )− E(Yn)2 = E

((∑
S

1AS

)2)
−
(∑

S

E(1AS
)

)2

.
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We can rearrange a little to get an expression for the variance in terms of the probabilities of
the events AS and AT

V(Yn) = E
(∑

S

1AS

∑
T∈[n]3

1AT

)
−
∑
S

E(1AS
)
∑
T

E(1AT
)

=
∑
S,T

(
E(1AS

1AT
)− E(1AS

)E(1AT
)
)

=
∑
S,T

(
P(AS & AT )− P(AS)P(AT )

)
. (9)

If S ∩ T = ∅, i.e. the vertex subsets S and T are disjoint then the events AS and AT are
independent. Notice this is also true if S and T intersect in one vertex because they still share
no edges in common. Hence if |S ∩ T | ≤ 1 then P(AS & AT ) = P(AS)P(AT ) and these terms
cancel in the expression for the variance (9) above.

So by this observation and (9),

V(Yn) ≤
∑

|S∩T |={2,3,4}

P(AS & AT ). (10)

We now consider the three options: |S ∩ T | = 2, 3, 4. For each of these, for S, T ∈
(
[n]
4

)
with

the given intersection we want to calculate P(AS & AT ). For |S ∩ T | = 2, one edge is shared.
There are 10 other edges that need to be present in order to have on both S and on T . Hence
P(AS & AT ) = p11 for |S ∩ T | = 2. Similarly, for |S ∩ T | = 3, we get P(AS & AT ) = p9 and
for |S ∩ T | = 4, we get P(AS & AT ) = P(AS) = p6.

The aim is to find an upper bound for the right hand side of (10). Hence we want to know how

many S, T ∈
(
[n]
4

)
for each of the possible overlaps. When S and T overlap on 2 vertices, the

number of ways to pick them is to first pick the set of vertices in S then pick the two vertices in
S that will ovelap with T , and lastly pick the last two vertices in T (the ones that don’t overlap

with S). This makes
(
n
4

)(
4
2

)(
n
2

)
. Actually all we need is that the number of S, T ∈

(
[n]
4

)
which

overlap on two vertices is at most n6. Similarly the number that overlap on three vertices is at
most n5 and the number overlapping on all four vertices is at most n4.

We can now that calculate an explicit upper bound on our variance. From (9),

V(Yn) ≤ n6p11 + n5p9 + n4p6. (11)

Now we have a good upper bound on the variance. What we actually want to show is that whp
Gn contains a . In other words we want to show whp Yn > 0.

We use the following non-obvious idea. I have some b for which I know b > 0 and I want to use
this to show that a > 0. Notice it is enough to show that |b− a| < b.

Let’s go. By some re-arraning and Chebyshev,

P(Yn > 0) ≥ P
(
|Yn − E(Yn)| < E(Yn)/2

)
= 1− P

(
|Yn − E(Yn)| ≥ E(Yn)/2

)
≥ 1− 4V(Yn)

E(Yn)2
.

The problem is now reduced to terms we have already calculated. By (11),

P(Yn > 0) ≥ 1− n6p11 + n5p9 + n4p6(
n
4

)
p6

. (12)

17



For n2/3p → ∞ the fraction in (12) goes to zero. Hence for n2/3p → ∞ whp G(n, p) contains
a as a subgraph.

Exercise 5. Given k ∈ N, let Pk be the set of graphs which have a path on k vertices as a
subgraph.

(a) Find the threshold function for P3 (notice P3 is the set of graphs containing the path
as a subgraph).

(b) Find the threshold for P4.

(c) Let k ∈ N be a constant. Find the threshold for Pk in terms of k and n.

Exercise 6. We can define an interated majority function for n = 3k. The base case is
Imaj1(x1, x2, x3) = Maj3(x1, x2, x3) and

Imajk(x) = Maj3(Imajk−1(x1, . . . , x3k−1), Imajk−1(x3k−1+1, . . . , x2.3k−1), IMajk−1(x2.3k−1+1, . . . , x3k)).

(a) Calculate the influence of the i-th bit Ipi (Imaj2) and total influence Ip(Imaj2).

(b) For p = 1/2 calculate Ipi (Imajk) and Ip(Imajk).

Exercise 7. Suppose A is non-trivial monotone and let pc(n) be such that

P(G(n, pc(n)) ∈ An) =
1

2

and then show that for pb(n) = 1− (1− pc(n))k we have

P(G(n, pb(n)) ∈ An) = 1− 1

2k
.

Solution Consider the union of k copies of G(n, p0), for some k which we will decide later. Let
H = ([n], E(G1)∪ . . .∪E(Gk)) where each Gi ∼ G(n, p0). Here the graphs Gi are all defined on
the same vertex set [n], and H is the random graph on this vertex set with edge set the union of
the edge sets of the Gi. For any given i 6= j ∈ [n] the probability ij is not in the edge set of H
is exactly the probability that the edge ij does not appear in any of the Gi, which is (1 − p)k.
This means H is the random graph where each edge is present independently with probability
1− (1− p)k. Thus H ∼ G(n, 1− (1− p)k).

The next idea is to notice that A monotone means that H ∈ A if ∃i such that Gi ∈ A. Thus,

P(H ∈ A) ≤ 1− P(∀i, Gi /∈ A) = 1− P(G1 /∈ A)k = 1− 1

2k
. (13)
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Appendix: Probability Recap

Lemma 5.11 (Markov’s inequality). If X is a random variable taking only non-negative values
and t > 0, then P(X ≥ t) ≤ E[X]/t.

Proof. (of Markov’s inequality) Let 1X≥t be the indicator function of the event that X ≥ t.
Then always (with probability 1), the random variable X satisfies the relation X ≥ t1X≥t. Now
take the expectation of both sides to get

E(X) ≥ tE(1X≥t) = tP(X ≥ t).

Recall the variance V[X] of a random variable X is defined by

V[X] = E(X − EX)2 = E[X2]− E[X]2.

Lemma 5.12 (Chebyshev Inequality). Let X be a random variable and let t > 0. Then

P(|X − E[X]| ≥ t) ≤ V[X]

t2
.

Proof. This follows from Markov’s inequality. We consider the probability of the event that the
difference between X and its expectation it at least t. As t is positive,

P
(
|X − E[X]| ≥ t

)
= P

(
(X − E[X])2 ≥ t2

)
.

Then Markov’s inequality applies to show this is less than E(X − E(X))2/t2 which is simply
V[X]/t2 and we are done.
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