
Structure in noisy networks - WASP Community Building 2025

Please choose some questions below amounting to at least (3) points. Either find me in person on
26th August (or, if you miss these, email to me fiona.skerman@math.uu.se), photos or scans of
handwritten solutions are ok. Feel free to work in groups of up to six, and only one submission per
group is required.

I: Modularity-based questions

M1. (3) (leiden) The leiden algorithm is an alternative algorithm which also works by iteratively
refining partitions based on modularity score, and has been proposed by some of the same
authors as louvain. Read up on it and write an explanation of how it works, including (possibly
hand-drawn) diagrams.

M2. (3) (louvain) It has been claimed the louvain output can have disconnected clusters. Read
the appendix of the paper introducing leiden (link to paper). There are calculations shown for
a different quality function on partitions (‘CPM quality function’ not modularity), check if the
same example works for modularity.

Alternately, construct your own example of a graph and node ordering(s) for which modularity–
based louvain returns disconnected parts.

M3. (3) (louvain) In Louvain, What is the tie-breaking rule used in the original implementation by
Blondel et al.? Find original documentation or original code, show relevant snippet of text or
code and explain.

M4. (theory) Let G be a graph with m ą 1 edges and no isolated vertices1. Suppose also that A˚ is
a modularity-optimal partition of G, i.e. qA˚pGq “ q˚pGq

(a) (1) A leaf vertex (or pendant vertex ) is a vertex which has exactly one edge connected to
it. Show that if v is a leaf vertex joined by edge uv to u (which may join other vertices)
then v and u are in the same part in A˚.

(b) (2) Show that all parts/communities A in A˚ have ě 2 vertices.

M5. (resolution limit - the
?
2m threshold) We re-prove the threshold claimed in the lecture.

Suppose H is a connected component with h edges, and it sits inside a larger graph G which has
m edges in total (including the h edges in H). In an optimal partition A˚ of G the component H
is partitioned separately to the rest of G, let AH denote partition A restricted to H. Define
partial modularity

qAH
pH,mq “

ÿ

APAH

epAq

m
´

volpAq2

4m2
.

(a) (1) Show that for the partition AH together of H which places all of the vertices in the same
part

qAH together
pH,mq “

h

m
´

h2

m2

1isolated vertices are those which have no edges connected to them
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(b) (1) Show that if H is connected then for any partition AH split that splits H into two pieces

qAH split
pH,mq ď

h

m
´

1

m
´

h2

2m2
(1.1)

(c) (bonus) Show that if H is connected then for any partition AH split that splits H into k ě 2
pieces

qAH split
pH,mq ď

h

m
´

k ´ 1

m
´

h2

km2

(d) (1) Conclude for any H the optimal partiton of G will places vertices of H together in same
part if h ă

?
2m

(e) (1) Show that if H is two equal sized cliques connected by a single edge (call this dumbbell
graph) then the ‘natural’ split achieves the RHS of the expression (1.1) above.

(f) (1) Conclude that for a dumbbell graph there is an optimal partition of G will split the
dumbbell graph into the two natural halves.

M6. (3)(resolution limit - affect of the resolution parameter) Now considered the general modularity
formula with resolution parameter λ, i.e.

qλApGq “
ÿ

APA

epAq

m
´ λ

volpAq2

4m2

which has partial modularity for the partition restricted to AH

qAH
pH,mq “

ÿ

APAH

epAq

m
´ λ

volpAq2

4m2
.

Suppose you have a ‘dumbbell’ connected component H consisting of two equal sized cliques
connected by a single edge, h edges total, and that H is a connected component in a larger
graph G. Compare two partitions of G - where either H as a single part or H split into two
parts. Find the threshold for h in terms of λ and m such that splitting is better (higher partial
modularity score) if h ą fpλ,mq and keeping together is better if h ă fpλ,mq.

M7. (3)(simulations, modularity and stochastic block model) Generate random graphs according to
the stohcastic block model (exact model of your choice). Find the partition output by louvain,
leiden or another modularity-based community recovery algorithm of your choice2. Investigate
the closeness of the ouputs of these algorithms to the planted communities in the stochastic
block model. (Use any ‘closeness’ measure of the two partitions, see also ‘classification agreement
indices’, or just check whether the algorithm outputs the correct number of parts).

M8. (3) (degree tax – investigating the penalty term) In the usual modularity formula, for vertices i
and j, approximate the probability there is an edge ij by didj{p2mq, where m is the number of
edges in the graph.

For a given graph G, we may choose a random graph G1 uniformly at random from the set of
graphs with the same degree sequence as G, and calculate the precise probability that ij is an
edge in G1. Call this the ‘exact penalty’.

Can you design a function which is more accurate than didj{p2mq?3

See an example of this in the paper by Chang and Van Mieghem Figure 8 at this link.

2python package networkx contains an implementation of louvain: link and there are also packages leidenalg,
louvain and igraph which may be helpful.

3Alternately, try the following: for i ‰ j set didj{p2m ´ 1q and 0 for loops, and see how the error compares to the
standard modularity.
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IIa: Planted network models - one hidden community

C1. (3) (finding a planted clique using spectral methods). Let G „ G1pn, k, 1{2q be a random graph
with planted clique on k vertices, and all other edges appear with probability 1{2. Let A denote
the adjacency matrix of G and let M be matrix defined by subtracting a half from each entry
Mij “ Aij ´ 1{2. Let x be an eigenvector of largest eigenvalue of M . Let I be the k vertices
with largest |xv| value.4 Simulate this for different values of n and k and display results on the
success of this algorithm at recovering the planted clique (e.g. with a heatmap).

C2. (3) Consider the planted dense subgraph model PDS1pn, k, p, qq. It is important that we consider
the uniform model, i.e. where the set of community vertices S˚ has size exactly k and is chosen
uniformly at random from all

`

n
k

˘

subsets of size k. We want to simulate this graph, then use 2-3
different algorithms to attempt recovery and plot rate of success of each for different parameter
values. A good measure of success is the overlap, if Ŝ is the k-vertex set returned by the algorithm
then the overlap opS˚, Ŝq “ |S˚ X Ŝ|{k.

A possible set of three algorithms to compare are Ŝ1 the k vertices of highest degree, Ŝ2 an
iteration of this, where we pick the k vertices which have the largest number of neighbours in
Ŝ1, and Ŝ3 (the spectral output from the previous question). A possible set of parameters would
be (n “ 100, k “ 10, q “ 0.4, p “ 0.5, 0.6, 0.7, 0.8) but you may have to play with these a little
to get some interesting behaviour.

C3 (maximum likelihood estimator MLE) Consider the planted dense subgraph model PDS1pn, k, p, qq

where the planted clique has exactly k vertices. Denote by S˚ the planted clique.

(a) (1) (theory MLE) The first step is to calculate the probability of generating a particular
graph G given that the planted clique is on particular vertices. Label the vertices 1, . . . , n
and suppose the clique is on vertices 1 and 2, and label an edge between vertices i and j as
ij. Show

PpG|S˚ “ t1, 2uq

“ E
”

ź

i,jď2

p1rij P Esp ` 1rij R Esp1 ´ pqq
ź

maxti,juą2

p1rij R Esq ` 1rij P Esp1 ´ qqq

ı

(b) (2) The maximum likelihood estimator for the planted community Ŝ planted set to be
such that the probability of generating the observed graph is maximal (with ties broken by
choosing a random set with maximal probability). That is,

ŜpGq “ max
SĎV pGq

PpG|S˚ “ Sq

Simulate the planted dense subgraph (or planted clique) model for various values of n, k, p, q
and record the proportion of times that the maximal likelihood estimator returns the right
vertex set.

(c) (2) Implement another method for guessing the position of the planted subgraph S˚, e.g.
picking the k vertices of highest degree, or a spectral method as in other questions. Can you
find some values for n, k, p, q such that the maximum likelihood method performs better
than your chosen fast method?

4One can also implement a ‘clean up’ step: let C be the set of vertices in the graph which have ě 3k{4 neighbours
in I.
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IIb: Planted network models - multiple hidden communities

Several questions will relate to the stochastic block model, SBM so we define it here, and some graph
theory notation for Q3.

Definition - Stochastic Block Model - vanilla model (For Q3)
Let SBMpn, p, qq be the model constructed as follows. For each vertex v P rns independently let v P S˚

with probability 1{2. Let σv “ 1 if v P S˚ and σv “ ´1 if v R S˚. Construct G by choosing each edge
to be present independently with probability

Ppuv P E | σu, σvq “

#

p if σuσv “ 1

q otherwise.

We also consider fixed size version SBM1pn, p, qq which is as above except we take S˚ P
`

rns

n{2

˘

, i.e. let S˚

be a set of n{2 vertices chosen uniformly from all sets of that size in rns. For this model we assume n
is even.

Definition - Stochastic Block Model many unequal size parts (For Q2) - see Figure 1.
Let SBMpn, q, s, px1, x2, . . . , xℓqq be the model constructed as follows. For each vertex v P rns, σpvq P

t1, . . . , ku, we independently choose σpvq “ i with probability xi. Construct G by choosing each edge
to be present independently with probability

Ppuv P E | σu, σvq “

#

q ` s
xi

if σu “ σv “ i

q otherwise.

q + s
x1

q + s
x2

q

q q

q q

q

q + s
xℓ

x1 x2 xℓ

x1

x2

xℓ

Figure 1: Stochastic Block Model (SBM). General model for many communities of unequal sizes.

Graph theory notation.(For Q1) For graph g “ prns, eq write epgq for the number of edges in g.
For vertex subset S Ă rns, write S̄ “ rnszS, write egpSq for the number of edges in g with both end
points in set S and write egpS, S̄q for the number of edges in g with one endpoint in S and the other
endpoint in S̄.
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Q1 (3) (theory) Let G be a random sample of SBM1pn, p, qq. Then show5

PpG “ gq “

ˆ

n

n{2

˙´1
ÿ

|S|“n{2

ˆ

pp1 ´ qq

qp1 ´ pq

˙epgq´egpS,S̄q

pp1 ´ pqp1 ´ qqq
n2{4 .

Q2 (theory) We want to show that counts of a small subgraph will distinguish the stochastic block
model with equal size parts from the stochastic blockmodel with non-equal sized parts.

Let x ‰ 1{2. Distinguishing H1 : SBMpn, p, q, px, 1 ´ xqq and H0 : SBMpn, p, q, p1{2, 1{2qq, see
Figure 2

Denote the adjacency matrix of the observed graph by A, it may be easier to count triangles,
# “

ř

i,j,k AijAikAjk or signed triangles # s “
ř

i,j,kpAij ´ qqpAik ´ qqpAjk ´ qq.

(a) (1) Show that triangles (or signed triangles) will not work. i.e. show that

E0r# s “ E1r# s.

(b) (1) Find a small subgraph H (or the signed version) such that E0r#Hs ‰ E1r#Hs.

(c) (1) (Bonus) For a subgraph H satisfying (b) characterise which distributions it can not
distinguish.

(d) (1) (Bonus) For a subgraphH satisfying (b) find the variance of #H underH0 and underH1.

q + 2s

q

q

q + 2s

1
2

1
2

1
2

1
2

H0

(a) H0 “ SBMpn, p, s, p 1
2 ,

1
2 qq

q + s
x1

q

q

q + s
1−x1

x1

1−x1

x1 1−x1H1

(b) H1 “ SBMpn, p, s, px1, 1 ´ x1qq

Figure 2: The distinguishing problem in question 1.

Q3 (theory) (1) Prove, disprove or salvage if possible. In the SBM for any two distinct nodes
the probability that they have common neighbours is independent of whether they share an edge
or not.

Feel free to consider either SBM or SBM’ and to change the wording slightly, e.g. to consider
expected number of common neighbours etc.

5or similar, typos expected.
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