
PhD course: average case complexity and statistical inference

This course will introduce some theory of, and cover some recent results in computational complexity
of statistical inference problems - detecting/recovering signals in noisy data.

First lecture: Thursday 26th Jan 15:15-17.00 in room 64119.

Details: The course is 5hp and will run throughout the spring term to June. Assessment will take
the form of 2 exercise sheets and 1 longer piece to focus on tractability/hardness/impossibility of a
particular problem not covered in the lectures or possibly a novel application of our methods assessed
via a written report or talk.

Lecturer: Fiona Skerman, fiona.skerman@math.uu.se. Feel free to contact me with any questions
about the course.

Description:

Statistical inference to us is detecting or recovering a signal in noisy data. An example is finding a
submatrix with entries normally distributed with mean λ and variance one in a matrix with all other
entries normally distributed with mean zero and variance one. For some signal strengths λ and some
sizes of submatrix fast algorithms are known which succeed with probability near 1; for some regions
of parameters it is information theoretically impossible to succeed with probability near 1.

We are interested also in the third region - parameter values for which there are brute-force algorithms
which succeed but no fast algorithms are known. In particular there is a regime of parameter values
where finding the submatrix is conjectured hard: and we are interested in rigorous results which give
evidence of hardness i.e. showing failure of restricted classes of algorithms and showing average-case
reductions to problems we believe are hard.

The course will use two running example problems, finding / detecting a submatrix with elevated
mean in a large random matrix, and finding / detecting a dense subgraph within a large random
graph; and will establish the phase transition diagrams for these problems (see below). These exhibit
a detection-recovery gap, it is easier to detect the presence of the planted substructure than to re-
cover it even approximately. We will also cover definitions, ideas and techniques necessary to establish
phase-transitions of hardness for statistical inference problems: including analysis of algorithms on
random structures: spectral techniques, SDPs & brute-force, bounding chi-square divergence, low-
degree polynomial method, average-case reductions. Note the probabilistic aspect means one has to
be careful what a reduction is (it is allowed to fail on some instances for example) and the proofs have
different techniques.

The following phase transition diagrams show parameter regimes where the example problems are
easy (fast algorithms succeed with probability near 1), hard (brute-force/slow algorithms succeed
with probability near 1 and evidence no such fast algorithms exists) and impossible (information
theoretically impossible for any algorithm to succeed with probability near 1). In each diagram the
size „ kpnq of the planted structure increases along the y-axis and the strength of the signal of
the planted substructure decreases along the x-axis. The detection problem is, given a (random)
sample from either H0, a distribution with no planted substructure or H1, a distribution with a
planted substructure to determine which distribution it likely came from. The recovery problem



is, given a (random) sample from H1 a distribution with a planted substructure, output (exactly or
approximately) the location of the planted substructure.
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Figure 1: Spiked Matrix Model (planted submatrix with elevated mean).
H0: random n ˆ n matrix with each entry independent with distribution Np0, 1q.
H1: n ˆ n matrix with each index in set S independently with probability k{n. Each entry independent with
distribution Npλ, 1q if i, j P S and with distribution Np0, 1q otherwise.
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Figure 2: Planted dense subgraph.
H0: Gpn, qq random graph on n vertices where each edge is present independently with probability q.
H1: Gpn, k, q, sq with s ą 0, random graph on n vertices where each vertex is part of ‘community’ S indepen-
dently with probability k{n. Each edge ij is present independently either with probability q ` s if i, j P S or
with probability q otherwise.



Further particulars The course will comprise „15 lectures and „5 problems sessions. The assess-
ment, all of which can be done in small groups (up to 2-3), will be exercise sheets (2ˆ25%) and 1
longer project (50%). The first exercise sheet will be out Friday 3rd and due Monday 21st February,
the second will be out Friday 24th March and due 17th April.

For the longer project is to understand the proof of tractability, hardness or impossibility of a partic-
ular problem. List of suggestions will be provided (by 21st April) including some reductions in total
variation from a paper by Brennan and Breser, spectral method to achieve the threshold in stochastic
block from a paper by Lelarge, Bordenave and Massoulié as well as some candidate lemmas which
together will prove some new results (probably a new testing problem where both H0 and H1 consist
of different planted structures instead of planted and null: with lemmas to prove low-deg hardness,
find fast algorithms, info-theoretic thresholds). Hand in either „5-10 pages give or 25 minutes talk
each person end of May / early June.

Dates (provisional) Lectures and problem sessions all in 64119 unless otherwise indicated, and
will start 15min past the hour.

L1 Thu 26th Jan 3-5pm
L2 Wed 1st Feb 3-5pm
L3 Thur 9th Feb 3-5pm
L4 Wed 15th Feb 3-5pm
L5 Wed 22nd Feb 3-5pm
L6 Wed 1st Mar 3-5pm
L7 Wed 8th Mar 3-5pm


