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is, given a (random) sample from H1 a distribution with a planted substructure, output (exactly or
approximately) the location of the planted substructure.
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Figure 1: Spiked Matrix Model (planted submatrix with elevated mean).
H0: random n ˆ n matrix with each entry independent with distribution Np0, 1q.
H1: n ˆ n matrix with each index in set S independently with probability k{n. Each entry independent with
distribution Np�, 1q if i, j P S and with distribution Np0, 1q otherwise.
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Figure 2: Planted dense subgraph.
H0: Gpn, qq random graph on n vertices where each edge is present independently with probability q.
H1: Gpn, k, q, sq with s ° 0, random graph on n vertices where each vertex is part of ‘community’ S indepen-
dently with probability k{n. Each edge ij is present independently either with probability q ` s if i, j P S or
with probability q otherwise.



random structures: spectral techniques, SDPs & brute-force, bounding chi-square divergence, low-
degree polynomial method, average-case reductions. Note the probabilistic aspect means one has to
be careful what a reduction is (it is allowed to fail on some instances for example) and the proofs have
di↵erent techniques.

The following phase transition diagrams show parameter regimes where the example problems are
easy (fast algorithms succeed with probability near 1), hard (brute-force/slow algorithms succeed
with probability near 1 and evidence no such fast algorithms exits) and impossible (information
theoretically impossible for any algorithm to succeed with probability near 1). In each diagram the
size „ kpnq of the planted structure increases along the y-axis and the strength of the signal of
the planted substructure decreases along the x-axis. The detection problem is, given a (random)
sample from either H0, a distribution with no planted substructure or H1, a distribution with a
planted substructure to determine which distribution it likely came from. The recovery problem
is, given a (random) sample from H1 a distribution with a planted substructure, output (exactly or
approximately) the location of the planted substructure.

A Planted problems

easyhard

0

impossible

2 log n
p
n n

size of planted clique

Figure 0: Planted clique.
H0: Gpn, 1

2 q random graph on n vertices where each edge is present independently with probability 1{2.
H1: Gpn, k, 1

2 q, random graph on n vertices where each vertex is part of ‘community’ S independently with
probability k{n. Each edge ij is present independently either with probability 1 if i, j P S or with probability
1{2 otherwise.

3



is, given a (random) sample from H1 a distribution with a planted substructure, output (exactly or
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H1: n ˆ n matrix with each index in set S independently with probability k{n. Each entry independent with
distribution Np�, 1q if i, j P S and with distribution Np0, 1q otherwise.
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H0: Gpn, qq random graph on n vertices where each edge is present independently with probability q.
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dently with probability k{n. Each edge ij is present independently either with probability q ` s if i, j P S or
with probability q otherwise.
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is, given a (random) sample from H1 a distribution with a planted substructure, output (exactly or
approximately) the location of the planted substructure.
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Figure 1: Spiked Matrix Model (planted submatrix with elevated mean).
H0: random n ˆ n matrix with each entry independent with distribution Np0, 1q.
H1: n ˆ n matrix with each index in set S independently with probability k{n. Each entry independent with
distribution Np�, 1q if i, j P S and with distribution Np0, 1q otherwise.
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Figure 2: Planted dense subgraph.
H0: Gpn, qq random graph on n vertices where each edge is present independently with probability q.
H1: Gpn, k, q, sq with s ° 0, random graph on n vertices where each vertex is part of ‘community’ S indepen-
dently with probability k{n. Each edge ij is present independently either with probability q ` s if i, j P S or
with probability q otherwise.
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