Average-case complexity
t statistical inference.

Fiona
ShERMAN

"recovering" "detecting"

Planted Dense Submatrix

Planted Dense Submatrix
Vertex labels: $\quad \sigma_{v}= \begin{cases}1 & \text { w. prob } \frac{k}{n} \\ 0 & \text { w. prob } 1-\frac{k}{n}\end{cases}$

$$
\left.\sigma=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right)\right\} k{ }^{1} 11^{\prime} ' s
$$

Planted Dense Submatrix
Vertex labels: $\sigma_{v}=\left\{\begin{array}{ll}1 & \text { w.pob } \frac{k}{n} \\ \phi & \text { w.pobs } 1-\frac{k}{n}\end{array} G(n, k, \lambda)\right.$

Planted Dense Submatrix
Vertex labels: $\quad \sigma_{v}=\left\{\begin{array}{ll}1 & \text { w.pob } \frac{k}{n} \\ \phi & \text { w. poo } 1-\frac{k}{n}\end{array} \quad G(n, k, \lambda)\right.$

Observe $Y_{u v} \sim \begin{cases}\lambda+\mathcal{N}(0,1) & \sigma_{u}=\sigma_{v}=1 \\ \mathcal{N}(0,1) & \text { o. } w\end{cases}$

Algorithmic $Q_{\text {NS }}$

- Detection : determine if whop sample from planted model or all entries $N(0,1)$
- Recovery : given sample from planted model

density $-\lambda$ find communities (exactly? weakly corr?)

$$
\begin{aligned}
& \text { Planted Dense Submatrix - Simulations } \\
& \begin{array}{l}
\text { Vertex } \sigma_{v}=\left\{\begin{array}{ll}
1 & \text { w.prob } \frac{k}{n} \\
\phi & \text { w.prob } 1-\frac{k}{n}
\end{array}\right. \text { labels: }
\end{array} \\
& Y_{u v} \sim \begin{cases}\mathcal{N}(\lambda, 1) & \sigma_{u}=\sigma_{v}=1 \\
\mathcal{N}(0,1) & \text { ow. }\end{cases} \\
& H_{1} n=100, k=15, \lambda=5 \quad H_{0} \quad n=100 \quad \text { (all } N(0,1) \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Planted Dense Submatrix - Simulations }
\end{aligned}
$$

$$
\begin{aligned}
& H_{1} n=100, k=15, \lambda=0.5 \quad H_{0} \quad n=100 \quad \text { (all } N(0,1) \text {) } \\
& \text { Sum }=100.35 \\
& \begin{array}{lll}
0 \\
4 \\
4 \\
12 \\
16 \\
16 \\
20
\end{array} \\
& \text { sum }=12.36
\end{aligned}
$$

Planted Dense Submatrix - Simulations

$H_{1} \quad n=100, k=15, \lambda=0.5$
$H_{0} \quad n=100$
o. W.

Sum of entries $n=100$, no planted set, samples =500

Detection

Recovery

REFS: MANY AUTHORS. BI13, BIS15, MW15, CX16, DM14, CLR17, HWX17, BBH18, GJS19, BMR20,BBP05 BS06, FP07, CDF09, BGN11,SWPN09, KBRS11, BKR+11, ACD11,BWZ20, SW22
'Easier to detect than recover'. Recovery

recover

Figure 1: Spiked Matrix Model (planted submatrix with elevated mean).
H_{0} : random $n \times n$ matrix with each entry independent with distribution $N(0,1)$.
$H_{1}: n \times n$ matrix with each index in set S independently with probability k / n. Each entry independent with distribution $N(\lambda, 1)$ if $i, j \in S$ and with distribution $N(0,1)$ otherwise.

impossible hard easy

$2 \log n$	\sqrt{n}	n
size of planted clique		

Figure 0: Planted clique.

$H_{0}: G\left(n, \frac{1}{2}\right)$ random graph on n vertices where each edge is present independently with probability $1 / 2$.
$H_{1}: G\left(n, k, \frac{1}{2}\right)$, random graph on n vertices where each vertex is part of 'community' S independently with probability k / n. Each edge $i j$ is present independently either with probability 1 if $i, j \in S$ or with probability $1 / 2$ otherwise.

Figure 2: Planted dense subgraph.

$H_{0}: G(n, q)$ random graph on n vertices where each edge is present independently with probability q. $H_{1}: G(n, k, q, s)$ with $s>0$, random graph on n vertices where each vertex is part of 'community' S independently with probability k / n. Each edge $i j$ is present independently either with probability $q+s$ if $i, j \in S$ or with probability q otherwise.

Planted Community $\left.G \sim G \underset{(n>q}{\left(n, \stackrel{\text { signal }}{p}, q^{n o i s e}\right.}, k\right), \quad K \stackrel{u}{\in}\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{l}\operatorname{Be}(p) \quad i j \in K \\ \operatorname{Be}(q) \text { ow }\end{array}\right.$ n points

Fig: Jawing X_{u}, Duke

n points

- k 'community' nodes
- $n-k$ non-community" "

Fig: Jawing X_{u}, Duke

Planted Community $G \sim G\left(\begin{array}{l}\text { signal } \\ \left(n, p, q^{q}, k\right), K \\ p>q\end{array} \quad K \stackrel{u}{\in}\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{l}\operatorname{Be}(p) \quad i, j \in K \\ \operatorname{Be}(q) \text { ow }\end{array}\right.\right.$
n points

- k 'community' nodes
- n-k non-community'"

0 with prob. P

Fig: Jawing X_{u}, Duke

Planted Community $G \sim G\left(\begin{array}{c}\text { signal } \\ \left(n, p, q^{q^{n}}, k\right), \\ p>q\end{array} \quad K \stackrel{u}{\in}\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{l}\operatorname{Be}(p) \quad i, j \in K \\ \operatorname{Be}(q) \text { ow }\end{array}\right.\right.$
n points
$0 \quad k$ community nod
$0 \quad n-k$ non-community
$0-$ with prob. p
$\bullet \quad-\quad q$
$\bullet \quad-\quad q$

Fig: Jawing X_{u}, Duke

Process

$$
\begin{aligned}
& n \text { points } \\
& 0 \quad k \text { community nod } \\
& \bullet \quad n-k \text { non-community } \\
& \bullet \quad \text { with prob. } p \\
& \bullet \quad q \quad q \\
& \bullet \quad Q \quad q
\end{aligned}
$$

Output
unlabelled graph

Fig: Jawing X_{u}, Duke

Planted Community $G \sim G\left(\begin{array}{c}\left.n_{\text {signal }}^{l}, p, q^{c^{n o i s e}}, k\right), \\ p>q\end{array} \quad K \in\binom{[n]}{k} \quad A i j=\left\{\begin{array}{l}\operatorname{Be}(p) \text { ir } \in K \\ \operatorname{Be}(q) \text { ow }\end{array}\right.\right.$
Process

$$
n=200 \quad k=50 \quad p=0.3 \quad q=0.1
$$

Fig: Jawing X_{u}, Duke

$\frac{\text { Process }}{n \text { points }}$
$0 \quad k$ 'community' nod
$-n-k$ non-community
$0 \quad$ with prob. p
$-\quad q$
Output
unlabelled graph

$$
n=200 \quad k=50 \quad p=0.3 \quad q=0.1
$$

Fig: Jawing X_{u}, Duke

$\frac{\text { Process }}{n \text { points }}$
$0 \quad k$ 'community' nod
$0 \quad n-k$ non-community'
0 with prob. p
$0 \quad q$
Output
un labelled graph

$$
n=200 \quad k=50 \quad p=0.3 \quad q=0.1
$$

Fig: Jawing X_{u}, Duke

Process
$\begin{array}{rl} & n \text { points } \\ 0 & k \text { community nod } \\ \bullet & n-k \text { non-community } \\ \bullet & \text { with prob. } p \\ \bullet \quad & q \\ \bullet \quad & q\end{array}$
Output
unlabelled graph

$$
p>q
$$

$$
n=200 \quad k=50 \quad p=0.3 \quad q=0.1
$$

Fig: Jawing X_{u}, Duke

Planted Clique $G \sim G\left(n, \frac{1}{2}, K\right), K \epsilon_{\in}^{u}\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{cc}1 & i j \in K \\ B e\left(\frac{1}{2}\right) \text { ow }\end{array}\right.$
Two parameters - size of planted structure

- sire of entire network

Q: When can we find planted clique?

Fig: Alex Whin

Planted Clique $G \sim G\left(n, \frac{1}{2}, K\right), K \notin\binom{[n]}{K} \quad A_{i j}=\left\{\begin{array}{l}1 \quad i, j \in K \\ \operatorname{Be}\left(\frac{1}{2}\right) \text { ow }\end{array}\right.$

$G^{\prime} \sim G\left(n, \frac{1}{2}\right)$: largest clique $2 \log _{2} n$. (with prob $\rightarrow 1$) \Rightarrow cant find "planted" one in amongst "bachground" one.

Fig: Alex Whin

Planted Clique $G \sim G\left(n, \frac{1}{2}, K\right), K{ }^{u} \in\binom{[n]}{K} \quad A_{i j}=\left\{\begin{array}{l}1 \quad i, j \in K \\ \operatorname{Be}\left(\frac{1}{2}\right) \text { ow }\end{array}\right.$

$G^{\prime} \sim G\left(n, \frac{1}{2}\right):$ largest clique why $\sim 2 \log _{2} n . \Rightarrow$ cant find "planted" one in amongst "bachground" one.
Methods to find clique
(1) DEGREE TEST
$\hat{K}=$ set of K vertices of highest degree $\operatorname{Thm}\left[K_{u}\right.$ 95] $\quad K=\Omega(\sqrt{n \log n}) \Rightarrow P(\hat{K}=K) \rightarrow 1 . \quad\left[\begin{array}{l}\text { an interative version } \\ \text { get } \Omega\left(V_{n}\right) \text { enough }\end{array}\right]$

Planted Clique $G \sim G\left(n, \frac{1}{2}, k\right), \quad K \notin\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{l}1 \quad i, j \in K \\ \operatorname{Be}\left(\frac{1}{2}\right) \text { ow }\end{array}\right.$

$G^{\prime} \sim G\left(n, \frac{1}{2}\right):$ largest clip
Methods to find clique
(1) DEGREE TEST
$\hat{K}=$ set of k vertices of highest degree
$\operatorname{Thm}\left[K_{u}\right.$ 95] $\quad K=\Omega(\sqrt{n \log n}) \Rightarrow P(\hat{K}=K) \rightarrow 1 . \quad\left[\begin{array}{l}\text { an interative version } \\ \text { get } \Omega\left(V_{n}\right) \text { enough }\end{array}\right]$
$\begin{aligned} & \text { (2) SPECTRAL METHOD } \\ & \text { (i) } u \text { top eigenvector of } W\end{aligned} \quad W_{i j}=\left\{\begin{array}{cc}2 A_{i j}-1 & i \neq j \\ 0 & 0 . W\end{array} \quad\right.$ Thm [Alon Krivelevich Sudakov 198]
(ii) (threshold) \tilde{K} index vector of k largest $\left|u_{i}\right|$ $k=\Omega(\sqrt{n}) \Rightarrow P(\hat{K}=K) \rightarrow 1$
(iii) (clean-up) $\hat{K}=\left\{v \in V(G): e(v, \tilde{K}) \geqslant \frac{3 k}{4}\right\}$

Planted Clique $G \sim G\left(n, \frac{1}{2}, K\right), \quad K \stackrel{u}{\in}\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{c}1 \quad i, j \in K \\ \operatorname{Be}\left(\frac{1}{2}\right) \text { ow }\end{array}\right.$

$G^{\prime} \sim G\left(n, \frac{1}{2}\right):$ largest clique why $\sim 2 \log _{2} n \Rightarrow$ cant find "planted" one $|K| \leqslant 2 \log _{2} n$ in amongst "bachground" one.
Methods to find clique
(1) DEGREE TEST
$\hat{K}=$ set of k vertices of highest degree
Th [Kuc 95] $k=\Omega(\sqrt{n \log n}) \Rightarrow P(\hat{K}=K) \rightarrow 1$.

$$
\left[\begin{array}{c}
\text { an interative version } \\
\Omega\left(v_{n}\right) \text { enough }
\end{array}\right]
$$

$\begin{aligned} & \text { (2) SPECTRAL METHOD } \\ & \text { (i) } u \text { top eigenvector of } W\end{aligned} \quad W_{i j}=\left\{\begin{array}{cc}2 A_{i j}-1 & i \neq j \\ 0 & 0 . w\end{array} \quad\right.$ Thm [Alon Krivelevich Sudakov 198]
(ii) (threshold) \tilde{k} index vector of k largest $\left|u_{i}\right|$ $K=\Omega(\sqrt{n}) \Rightarrow P(\hat{K}=K) \rightarrow 1$
(iii) (clean-up) $\hat{K}=\left\{v \in V(G): e(v, \tilde{K}) \geqslant \frac{3 k}{4}\right\}$
(3) SDP METHOD

Yes. If $k=\Omega(\sqrt{n})$.

Planted Clique $G \sim G\left(n, \frac{1}{2}, K\right), \quad K \stackrel{u}{\in}\binom{[n]}{k} \quad A_{i j}=\left\{\begin{array}{cc}1 & i, j \in K \\ B e\left(\frac{1}{2}\right) & \text { ow }\end{array}\right.$

* Rigorous Evidence (suggesting no
- reductions (avg.casel poly-time alg).
- restricted class of alg low deg poly
$G^{\prime} \sim G\left(n, \frac{1}{2}\right):$ largest clique why $\sim 2 \log _{2} n \Rightarrow$ cant find "planted" one in amongst "bachground" one.
Methods to find clique
(1) DEGREE TEST
$\hat{K}=$ set of k vertices of highest degree
$\operatorname{Thm}\left[K_{\text {uí 95 }}\right.$ 5 $] \quad K=\Omega(\sqrt{n \log n}) \Rightarrow P(\hat{K}=K) \rightarrow 1 . \quad\left[\begin{array}{l}\text { an interathe version } \\ \text { get } \Omega\left(v_{n}\right) \text { enough }\end{array}\right]$

(ii) (threshold) \tilde{k} index vector of k largest $\left|u_{i}\right|$

$$
K=\Omega(\sqrt{n}) \Rightarrow P(\hat{K}=K) \rightarrow 1
$$

(iii) (clean-up) $\hat{K}=\left\{v \in V(G): e(v, \tilde{K}) \geqslant \frac{3 k}{4}\right\}$
(3) SDP METHOD

Yes. If $k=\Omega(\sqrt{n})$.

CONTEXT

Detection

Ho \square

$$
\text { vs. } H_{1}{\sqrt{\frac{11}{k}}{ }^{k}}^{\text {a }}
$$

PLANTED CLIQUE
Recovery

recover

CONTEXT
Detection

PLANTED CLIQUE

\qquad \longrightarrow

Ho

$$
\text { vs. } H_{1} \sqrt{\frac{\prod_{k}^{k}}{k}}
$$

recover
Recovery

re.

Figure 2: Planted dense subgraph.

$H_{0}: G(n, q)$ random graph on n vertices where each edge is present independently with probability q. $H_{1}: G(n, k, q, s)$ with $s>0$, random graph on n vertices where each vertex is part of 'community' S independently with probability k / n. Each edge $i j$ is present independently either with probability $q+s$ if $i, j \in S$ or with probability q otherwise.

Hypothesis Testrig Gen Sample which model was it generated from.

$$
\begin{aligned}
& H_{0}: G \sim P_{n}: G\left(n, \frac{1}{2}\right) \\
& H_{1}: G \sim Q_{n}=G\left(n, \frac{1}{2}, k\right)
\end{aligned} \quad \square \text { distractions on } \mathbb{R}^{\binom{n}{2}}
$$

f detects
f doesn't detect

sec of poly
A degree D test $f_{n}: \mathbb{R}^{h^{2}} \rightarrow R$ deg $\leqslant D$. strongly seperates if

$$
\mathbb{E}_{P_{n}}[f]-E_{Q}[f]>\sqrt{\max \{\operatorname{Var}[f], \operatorname{Varp}[f]\}}
$$

"difference in means" \gg "fluctuations".

NB: $D \sim \log n$ consider small / fast

D $n \log n$ consider high deg/ slow.

Further particulars The course will comprise ~ 15 lectures and ~ 5 problems sessions. The assessment, all of which can be done in small groups (up to $2-3$), will be exercise sheets $(2 \times 25 \%$) and 1 longer project (50%). The first exercise sheet will be out Friday 3rd and due Monday 21st February, the second will be out Friday 24th March and due 17th April.

For the longer project is to understand the proof of tractability, hardness or impossibility of a particular problem. List of suggestions will be provided (by 21st April) including some reductions in total variation from a paper by Brennan and Breser, spectral method to achieve the threshold in stochastic block from a paper by Lelarge, Bordenave and Massoulié as well as some candidate lemmas which together will prove some new results (probably a new testing problem where both H_{0} and H_{1} consist of different planted structures instead of planted and null: with lemmas to prove low-deg hardness, find fast algorithms, info-theoretic thresholds). Hand in either $\sim 5-10$ pages give or 25 minutes talk each person end of May / early June.

Dates (provisional) Lectures and problem sessions all in 64119 unless otherwise indicated, and will start 15 min past the hour.

L1 Thu 26th Jan 3-5pm
L2 Wed 1st Feb 3-5pm
L3 Thur 9th Feb 3-5pm
L4 Wed 15th Feb 3-5pm
L5 Wed 22nd Feb 3-5pm
L6 Wed 1st Mar 3-5pm
L7 Wed 8th Mar 3-5pm

A degree D test $f_{n}: \mathbb{R}^{h^{2}} \rightarrow R$ deg $\leqslant D$. strongly seperates if

$$
\mathbb{E}_{P_{n}}[f]-E_{Q}[f]>\sqrt{\max \left\{\operatorname{Var}_{Q}[f], \operatorname{Varp}_{P}[f]\right.}
$$

"difference in means" \gg "fluctuations".

$$
G(n ; q ; \lambda, M)
$$

TH
Given parameters $n, k, \lambda^{\text {signal }}, M^{\text {\#commurities }}$

$$
\begin{aligned}
& D^{5} \lambda^{2} M^{2}\left(\frac{k^{2}}{n} v 1\right)=0(1) \Rightarrow N_{0} \operatorname{deg} D \text { test } \\
& \text { weakly separates } P_{n}, Q_{n} \\
& M^{2} \lambda^{2} \frac{k^{2}}{n}=w(1) \Rightarrow \operatorname{Deg} 1 \text { test which } \\
& \text { strongly separates } P_{n}, Q_{n} \\
& \text { \& } k=\omega(1) \\
& \text { strongly separates } P_{n}, Q_{n}
\end{aligned}
$$

