
Average-case complexity and statistical inference

We give an example of the sort of question we will look at. The idea is to ‘hide’ some structure
within a high-dimensional random object. We may then ask if we can detect this, i.e. whether we can
distinguish the vanilla random object from the random object plus planted structure, also if we may
recover, i.e. ‘find’ the planted structure from within the random object.

A favourite combinatorial random object is the Erdős–Rényi random graph, Gn,1{2, take n vertices
and between each pair of vertices independently place an edge with probability 1{2. We are interested
in the typical behaviour for large n. The structure we plant is a clique, i.e. between a subset S˚ of
the vertices of the graph, we place all the possible edges. Now, the random graph Gn,1{2 without the
planted structure will naturally have some cliques by chance, and indeed the largest of these will have
size approximately 2 log2 n with probability tending to 1 as n Ñ 8; which suggests it might not be
possible to detect or recover a planted structure of size smaller than 2 log2 n. This turns out to be true,
as we shall see. Interestingly, there is another phase transition. Fast algorithms finding the clique, e.g.
picking the vertices of highest degrees, are only known when the planted clique has size about n1{2 or
higher; which is considerably larger than 2 log2 n. There is some ‘evidence’ that this n1{2 threshold is
fundamental: by evidence we mean rigorous statements we can prove which suggest that there are no
polynomial time algorithms.

These ideas will be made precise in the course as we investigate what forms this evidence can take.
We illustrate the techniques on three running examples, planted clique, as described above, as well a
generalisation of it planted dense subgraph, and a Gaussian planted structure problem biclustering -
see Appendix A for a list and the phase transitions in each model. This area is very active and many
of the techniques and results presented here have been developed within the last decade and some
within the last year.

1 Detection

1.1 Definitions

Problem Setup We specify a dimension n, and parameters (e.g. k size of planted structure, λ
strength of ‘signal’, p, q probabilities of ‘community’ edges and ‘non-community’ edges respectively).
For each fixed set of parameters we are interested in the behaviour for large n or as n Ñ 8.

For a detection problem, under H0 the null hypothesis, we sample from the probability space Qn and
under H1 the alternate hypothesis we sample from the probability space Pn. We write P0pG “ gq to
denote the probability that a random sample G from probability distribution Qn is the determinis-
tic g (and similarly P1pG “ gq to denote the same for Pn). We will try to stick to the convention of
denoting random variables, random graphs or random matrices by capital letters and deterministic
values, graphs and matrices by lower case letters.

A test is a function ϕn on the union of the supports of Qn and Pn, with ϕnpgq P t0, 1u1. We need
a notion of how ‘good’ a test is at distinguishing Qn and Pn and will use risk. The risk of a test ϕ,
denoted rpϕq is

rpϕq “
ÿ

g: ϕpgq“1

P0pϕpGq “ gq `
ÿ

g: ϕpgq“0

P1pϕpGq “ gq “ P0pϕpGq “ 1q ` P1pϕpGq “ 0q

1Suppose for now that ϕn is deterministic, later we may have random tests.
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Observe that it is easy to design a function which achieves risk 1. We can take ϕguess nullpgq “ 0 for
all g in the support of Pn and Qn, or we could take the random test ϕppgq which takes value 1 with
probability p and 0 otherwise. Both of these have risk 1 for each input g.

We say a test ϕn achieves strong detection between H0 and H1 if rpϕnq Ñ 0 as n Ñ 8. Similarly,
we say a test ϕn achieves weak detection between H0 and H1 if there exists ε ą 0, n0 such that
rpϕnq ă 1 ´ ε for all n ą n0.

We may now define what we mean by easy and possible detection. Say for H0 : Qnpα, βq vs
H1 : Pnpα, βq that strong detection for H0 vs H1 is easy for parameters α, β if there exists a test ϕn

implementable as a polynomial time algorithm such that rpϕnq Ñ 0 as n Ñ 8. The definition for
weak detection being easy is similar, just replace the condition on rpϕnq as required.

Say for H0 : Qnpα, βq vs H1 : Pnpα, βq that strong detection for H0 vs H1 is possible for parameters
α, β if there exists a test ϕn such that rpϕnq Ñ 0 as n Ñ 8. In particular ϕn may be a brute-force
algorithm. The definition for weak detection being possible is similar.

Later we will be able to talk about detection problems being hard if they are possible and we have
‘evidence of hardness’. We will usually specify which evidence of hardness.

1.2 The spiked matrix model

We define a probability space BCn over n ˆ n matrices with real entries. The detection problem will
be to distinguish between a matrix sampled from the ‘null’ where all entries normally distributed with
mean zero and variance one, from the ‘alternate’ with a planted submatrix of expected size k which
has entries with mean λ and variance one. See Fig 6.

Given the number of vertices n, total community size k and signal strength λ ą 0, define the additive
(independent) Gaussian model BC “ BCpn, k, λq as follows. Under BCpn, k, λq, independently for
each i P rns :“ t1, 2, . . . , nu, the community label σi is sampled such that σi “ 1 with probability k{n
and σi “ 0 with probability 1´ k{n, then set Xij “ σiσj For each pair of vertices i, j P rns the matrix
entry Yij is sampled from

Yij |Xij „

#

N pλ, 1q , Xij “ 1 pi.e. σi “ σj “ 1q

N p0, 1q, Xij “ 0.

Note that if ij ‰ kl then Yij |Xij is independent from Ykl|Xkl. We define the (fixed number) Gaussian
model BC1 “ BC1

pn, k, λq as above except that we choose a set S uniformly from all subsets of rns of
size k, and set σi “ 1 if i P S and σi “ 0 if i R S. Thus in this model we have exactly k ‘community’
indices.

1.3 When detection in matrix model is EASY

Lemma 1.1. Fix α, β such that 0 ă α, β ă 1 and β ą α{2 ` 1{2 (i.e. the green region in Fig 1).
Let Qn “ Qnpα, βq be BCpn, 0, 0q and Pn “ Pnpα, βq be BCpn, k “ nβ, λ “ n´αq. Then the strong
detection problem is easy for α, β.

end L1
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easy

1

1/2

0 1

β k = Θ(nβ)

λ = Θ(n−α)

α1/2

(a) detection easy

Figure 1: Region considered in Lemma 1.1, see also Figure 6

Proof. (sketch)
We show the follow test distinguishes with high probability. Define ϕsum : Rn2

Ñ t0, 1u by

ϕsumpxq “

#

1, if
ř

i,j xij ą 1
2λk

2,

0, otherwise.

Recall that if X1 „ Npµ1, s
2
1q and X2 „ Npµ2, s

2
2q and X1 and X2 are independent then the sum is

distributed X1 `X2 „ Npµ1 `µ2, s
2
1 `s22q. Note under H0 we have n2 variables distributed as Np0, 1q,

and under H0 we have k2 variables distributed as Npλ, 1q and n2 ´k2 distributed as Np0, 1q, and thus

ÿ

i,j

Xij “

#

Np0, n2q, under H0,

Npλk2, n2q, under H1.

The proof may now be completed using Lemma B.22.

Lemma 1.2. Fix α, β P p0, 1q such that either of the following holds β ą α{2`1{2 or β ą 2α (i.e. the
shaded dashed and non-dashed regions in Fig 2). Let Qn “ Qnpα, βq be BC 1pn, 0, 0q and Pn “ Pnpα, βq

be BC 1pn, k, λq. Then the strong detection problem is possible for α, β.

2Intuition: we succeed when the difference in means " square-root of the variance. In this case the difference in
means of the test statistic is λk2

“ n´α`2β , and the variance is n2 under both H0 and H1. So this intuition would say
we succeed when n´α`2β

" n, i.e. when ´α ` 2β ą 1, which is what we are aiming for.
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possible

1

1/2
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β k = Θ(nβ)

λ = Θ(n−α)

α1/2

(a) detection possible

Figure 2: Region considered in Lemma 1.2, since we already have a test for the green region in Figure 1, we
need only prove there is a (brute-force) test for the dashed region. See also Figure 6

Proof. Note that by Lemma 1.1 we have a test which distinguishes whp for α, β P p0, 1q with
β ą α{2 ` 1{2 (i.e. the green region in Fig 1). Thus it suffices to construct a test which distin-
guishes whp for fixed α, β P p0, 1q with β ą 2α (i.e. the purple dashed area in Fig 2.

Let ϕsearch : Rn2
Ñ t0, 1u be defined by

ϕsearchpxq “

#

1, if maxSĂrns, |S|“k

ř

i,jPS xij ą 1
2λk

2,

0, otherwise.

Define the random variable Tsearch “ maxSĂrns, |S|“k

ř

i,jPS Xij , i.e. the quantity that is thresholded
in ϕsearch.

Under H0, Tsearch is the max of
`

n
k

˘

variables, T1, . . . , Tpnkq where each Ti „ Np0, n2q.

Recall that if X1 „ Npµ1, s
2
1q then for constant a, we have aX1 „ Npaµ1, a

2s21q. Thus n´1Ti „ Np0, 1q,
and so we can apply Lemma C.1. (Note the Ti’s are not independent, they are sums of overlapping
parts of the matrix, but we don’t need independence to apply the lemma.) By Lemma C.1 whp

Tsearch “ max
i“1,...,m

1

n
Ti ď

d

p2 ` εq logp

ˆ

n

k

˙

q ď
a

p2 ` εqk log n

where we used the fact that
`

n
k

˘

ď nk.

Under H1, again Tsearch is the max of
`

n
k

˘

variables, including the sum over the planted submatrix, and
since it is a max it is at least as big as the sum over the planted set S˚. Let Tplanted “

ř

i,jPS˚ Xi,j .

Since Tplanted is the sum of k2 Npλ, 1q random variables, Tplanted „ Npλk2, k2q and ErTplanteds “ λk2.

We want to show Tplanted ą λk2{2 whp. Since Tplanted has expected value λk2 it is enough to show
that whp Tplanted is at most λk2{3 away from its expectation - this shows whp Tplanted ą 2λk2{3 - see
also the chat in Section B. By Lemma B.2, with t “ λk2{3
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Pp|Tplanted ´ λk2| ě λk2{3q ď 2 expp´pλk2{3q2{p2k2qq “ 2 expp´λ2k2{6q.

Now, note that 2 expp´λ2k2{6q “ op1q if λk Ñ 8, i.e. nβ´α Ñ 8 which is true whenever β ą α.
Hence for β ą α Tplanted ą λk2{2 whp. Since Tsearch ě Tplanted always. Thus under H1 whp ϕsearch “ 1
as required.

2 Planted Clique

Our approach for the possible and impossible regions of planted clique follows closely that of [2].

2.1 When planted clique is POSSIBLE

possible

0 2 log n
√
n n

size of planted clique

Figure 3: We show the detecting planted clique is possible in the dashed region in Lemma 2.1. We prove there
is a (brute-force) test that distinguishes H0: Gpn, 1{2q and H1: G

1pn, k, 1{2q with high probability.

Lemma 2.1. Let k “ kpnq ą 2 log2 n ` 3. Then for H0 : Gpn, 1{2q vs H1 : G1pn, k, 1{2q strong
detection is possible.

For graph g, define ωpgq to be the size of the largest clique in g, i.e. the size of the largest set of
vertices S such that each pair of vertices in S is connected by an edge in graph g.

Proof. Our test will work by thresholding on the size of the largest clique in the graph. Let

ϕnpgq “

#

1, if ωpgq ą 2 log2 n ` 3,

0, otherwise.

Then the risk of this test is

rpϕnq “ P0pϕn “ 1q ` P1pϕn “ 0q “ P0

`

ωpGq ą 2 log2 n ` 3
˘

` P1

`

ωpGq ď log2 n ` 3
˘

.

Note that the size of the largest clique in the planted model is at least the size of the planted clique
(it might be bigger if there is another vertex which happens to be connected to each vertex in the
planted clique). Since, in Pn, we have planted a clique of size 2 log2 n, we have

P1pϕnpGq “ 0q “ P1pωpGq ď log2 n ` 3q “ 0.

Thus the risk simplifies to consider only the size of the largest clique in Gpn, 1{2q

rpϕnq “ P0

`

ωpGq ą 2 log2 n ` 3
˘

.

Let Nm be the number of cliques of size m. Since P0pNm ě 1q ď E0rNms it suffices to bound the
expected number of cliques. (This is an example of the ‘first moment method’.)
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Then we may calculate

E0rNms “
ÿ

S: |S|“m

P0

`

S is a clique inG
˘

“

ˆ

n

m

˙

2´pm2 q

ď nm2´mpm´1q{2

“ pn2´pm´1q{2qm.

One may then check that for m ď 2 log2 n ` 3 that n2´pm´1q{2 ď 1{2. And thus for m ď 2 log2 n ` 3

E0rNms ď 2´m.

and hence for m ď 2 log2 n ` 3, E0rNms Ñ 0 as n Ñ 8.

Hence, since P0pNm ě 1q ď E0rNms, we have P0pωpGq ě 2 log2 n`3q Ñ 0 as n Ñ 8 and thus we have
that the risk of our test goes to zero as n goes to 8 as required.

end L2

3 Likelihood ratio and risk
begin L3

We define the likelihood ratio between discrete probability spaces H0 : Q and H1 : P by

Lpgq “
P1pG “ gq

P0pG “ gq
. (3.1)

Define ϕ˚ “ ϕ˚pP,Qq, the likelihood ratio test to be the following test

ϕ˚pgq “

#

1, if Lpgq ď 1,

0, if Lpgq ą 1.

Lemma 3.1. Suppose P and Q are discrete probability spaces. The test ϕ˚ achieves minimal risk over
tests to distinguish H0 : Q and H1 : P .

Proof. (in lectures).

3.1 When planted clique is IMPOSSIBLE

(In lectures.) For further details see [2](pages 5-9) which we follow in this section.
end L3

4 Introduction to the low degree method
begin L4

We say function f strongly3 separates H0 : Qn and H1 : Pn if for all ε ą 0, Dn0 such that

maxt
a

Var0rf s,
a

Var1rf s u ď ε
ˇ

ˇE1rf s ´ E0rf s
ˇ

ˇ.

The next lemma says that strong separation implies that there is a test with risk going to zero.

3weak separation is defined similarly, by replacing @ε with DC. One may show that weak separation implies there is
a test with risk strictly less than 1.
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Lemma 4.1. If f strongly separates H0 : Qn and H1 : Pn then there exists a sequence of tests ϕn

such that the risk of rpϕnq Ñ 0 as n Ñ 8.

Proof. Recall Chebyshev’s inequality, for X a random variable with VarpXq “ σ2 then

Pp|X ´ ErXs| ě tq ď
σ2

t2
.

First note we may assume that E1rf s ě E0rf s because if not we may work with ´f instead.

Let the threshold be the midpoint of the expectations: τ “ 1
2pE1rf s ´ E0rf sq. And let the test be

ϕf pGq “ 1 if fpGq ě τ and ϕf pGq “ 0 otherwise.

Loosely, it is enough for the value fpGq to be close E0pfq to ensure fpGq is small enough that the test
classifies G as coming from the null, i.e. ϕf pGq “ 0. In particular, note that if we have |fpGq´E0rf s| ă
1
2pE1rf s ´ E0rf sq then fpGq ă τ and thus ϕf pGq “ 0. Hence

P0pϕf pGq “ 1q ď P0

ˆ

|fpGq ´ E0rf s| ě
1

2
pE1rf s ´ E0rf sq

˙

ďCh Var0pfpGqq
1
4pE1rf s ´ E0rf sq2

ď
ε2

4
for all n ą n0.

This shows that P0pϕf pGq “ 0q Ñ 1 as n Ñ 8. To show that P1pϕf pGq “ 1q Ñ 1 as n Ñ 8 is similar,
one shows that fpGq sufficiently close to E1rf s implies that ϕf pGq “ 1 and one can thus bound the
probability that P1pϕf pGq “ 0q, details left to the reader.

Given a sequence of hypothesis testing problems H0 : Qn and H1 : Pn define the (degree-D) advantage,
written AdvďD, by

AdvďDpPn, Qnq “ max
deg fďD

E1rf s
a

E0rf s
. (4.1)

Note we divide by the second moment under the null, rather than the variance under the null. Intu-
itively (4.1) can be thought of as the fluctuations in the planted model divided by the fluctuations in
the null model. The term advantage is because it is meant to give a quantitative value for how much
advantage over random guessing one can get by thresholding degree D polynomials.

We may then define notions of easy and hard for degree D polynomials. Say

testing problem H0 : Qn vs H1 : Pn is

#

easy for degree D if AdvďDpPn, Qnq Ñ 8 as n Ñ 8

hard for degree D if AdvďDpPn, Qnq Ñ 0 as n Ñ 8.

From this we may finally define low degree polynomial hardness - basically we regard degree log n
polynomials as ‘low degree’. Say a testing problem H0 : Qn vs H1 : Pn is easy for low degree polyno-
mials if there exists some constant C, such that it is easy for degree D “ C log n. Likewise we say a
testing problem H0 : Qn vs H1 : Pn is hard for low degree polynomials (or ‘low degree hard’) if there
exists some constant C 1, such that it is hard for degree D “ C 1 log n.
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4.1 Linear algebra

Suppose for now that the null H0 : Qn is a (sequence of) discrete probability space(s). We define a
linear product of functions, with respect to the null:

xf, gy “ E0rfgs “
ÿ

G

P0pGqfpGqgpGq.

Let Q̃n be supported on vectors Y “ pYiq
N
i“1 of length N “ Npnq such that each co-ordinate takes

values `1 and ´1 independently with probability a half. Then for α Ď rN s, i.e. α is a set of indicies,
we may define

hα “
ź

iPα

Yi (4.2)

.
Claim. The set of functions thαuαĎrNs forms an orthonormal basis for Q̃n. (proof in lectures)

We will need the following lemma.

Lemma 4.2. For H0 : Q̃n (as above) and H1 : Pn a discrete probability space and for thαuαĎD

(defined (4.2)),

AdvďDpPn, Q̃nq2 “
ÿ

|α|ďD

`

E1rhαpY qs
˘2

end L4

4.2 When planted clique is HARD

Note if ti, ju ‰ tk, ℓu then

P1rij P E and kℓ P E | S˚ “ Ss “ P1rij P E | S˚ “ SsP1rkℓ P E | S˚ “ Ss

(to prove this one can check all cases, e.g. i, j, k P S, ℓ R S and all distinct etc).

In general, for any α Ď
`

rns

2

˘

we have

E1rχαpGqs “
ÿ

∅ĎSĎrns

ź

ijPα

E1r2Aij ´ 1 | S˚ “ SsP1rS˚ “ Ss

Now consider E1rAij | S˚ “ Ss “

#

1 if i, j P S

1{2 otherwise
and thus

E1r2Aij ´ 1 | S˚ “ Ss “

#

1 if i, j P S

0 if ti, ju Ę S

so finally we have the expectation of χαpGq conditional on the planted clique S˚ begin on the vertex
set S

E1rχαpGq | S˚ “ Ss “

#

1 if V pαq Ď S

0 otherwise.

From this we can calculate the non-conditional expectation to be

E1rχαpGqs “
ÿ

SĎrns

1rV pαq Ď Ss ¨ P1rS˚ “ Ss “ P1rV pαq Ď S˚s “

ˆ

k

n

˙|V pαq

.
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Claim 4.1. Let ε ą 0 and C ą 1 be fixed, then for large enough n,

ÿ

tď
?
C logn

n´2εtt2t
2

`
ÿ

?
C lognďtď2C logn

n´εttC logn ď 2

Proof of Claim 4.1. We consider each term in turn. First note that by taking logs and exponentiating,
for t ď pC log nq1{2,

n´2εtt2t
2

“ exp p´2tpε log n ´ t log tqq ď exp
´

´2t
`

ε log n ´ C1{2plog nq1{2 log log n
˘

¯

.

Thus for large enough n

ÿ

tď
?
C logn

n´2εtt2t
2

ď
ÿ

tď
?
C logn

expp´tε log nq

“
ÿ

tď
?
C logn

pn´2εqt

ď

8
ÿ

t“1

pn´2εqt “
1

n´2ε ´ 1
´ 1 ď 1

For the second term, we again begin by noting

n´εttC logn “ exp
`

´ log n
`

εt ´ C log t
˘˘

.

Thus since εt ´ C log t is minimized for small t,

ÿ

?
C lognďtď2C logn

n´εttC logn ď 2pC log nq1{2 max?
C lognďtď2C logn

n´εttC logn

“ 2pC log nq1{2 exp

ˆ

´ log n
`

εC1{2 log1{2 n ´
C

2
logpC log nq

˘

˙

“ exp
`

C 1 log log n ´ C2 log3{2 n ` C3 log n log logn
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

ď0 for large enough n

˘

where C 1, C2, C3 are some constants. And thus the second sum is at most 1 for large enough n as
required.

end L5

L6

5 Reductions

5.1 Worst-case reduction

Example of clique in Ḡ and vertex-cover in G given in lectures.

5.2 Average-case complexity

We say a probabilistic algorithm A succeeds in worst-case with probability 1 ´ ε if it succeeds with
probability at least 1 ´ ε on all inputs.
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Given a probability distribution P and a (random) input X „ P , we say a probabilistic algorithm A
succeeds in the average case with probability 1 ´ ε if

ÿ

x

PpX “ xqPpA succeeds on xq ě 1 ´ ε.

Note that an algorithm A which always succeeds on 1 ´ ε proportion of inputs x, and always fails on
an ε proportion of inputs x would succeed with probability 1 ´ ε in the average case, but not in the
worst case.

In lecture gave an average-case to worst-case reduction, on matrix-multiplication.

5.3 Reductions in total variation

We want to be able to say statements such as : solving the hypothesis testing problem H0 : Qn

vs H1 : Pn (say this is the submatrix problem) means we can solve the hypothesis testing problem
H 1

0 : Q1
n vs H 1

1 : P 1
n (say this is the planted clique problem). This will also be a form of reduction,

given an observation X, a matrix say, for the hypothesis testing problem H 1
0 : Q1

n vs H 1
1 : P 1

n the
original problem is to determine if X „ P 1

n (i.e. no planted submatrix) or if X „ Q1
n. We will find a

reduction, i.e. a map, r which takes the the observed matrix X to a graph rpXq such that if X „ Q1
n

(random matrix with Np0, 1q entries) then the random graph rpXq is distributed pretty much like the
random graph Gpn, 1{2q and conversely if X „ P 1

n (random matrix with planted submatrix distributed
as Npλ, 1q) then the random graph rpXq is distributed pretty much like the planted clique random
graph Gpn, k, 1{2q.

To quantify what we mean by ‘pretty much’ we need to define total variation distance.

Let P and Q be two discrete probability distributions on the same space. Then the total variation
distance between P and Q is

dTVpP,Qq “
ÿ

g

|PP pgq ´ PQpgq| “ sup
E

PP pEq ´ PQpEq “ inf
pX,Y q, X„P, Y „Q

PpX ‰ Y q,

where the infimum is over all couplings pX,Y q. Similarly, let P and Q be two continuous probability
distributions on the same space with density functions f and g respectively. Then the total variation
distance between P and Q is

dTVpP,Qq “

ż

|fpxq ´ gpxq| “ sup
E

PP pEq ´ PQpEq “ inf
pX,Y q, X„P, Y „Q

PpX ‰ Y q.

end L6

L7We will also use the notation LpXq, by to denote the ‘law of’ X, i.e. the distribution of X.

Let P and P 1 be probability distributions on the same space. Suppose that X „ P , A is an
map/algorithm, we write

P
A

ÝÑε P
1 if dTVpL

`

ApXq
˘

, P 1q ď ε

Now we are ready to define reduction in total variation distance.

We say that A is a reduction in total variation ε from the hypothesis testing problem H0 : Qn vs
H1 : Pn to the hypothesis testing problem H 1

0 : Q
1
n vs H 1

1 : P
1
n if

Pn
A

ÝÑε P
1
n
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and
Qn

A
ÝÑε Q

1
n.

Lemma 5.1. Suppose A is a reduction in total variation ε from the hypothesis testing problem H0 : Qn

vs H1 : Pn to the hypothesis testing problem H 1
0 : Q1

n vs H 1
1 : P 1

n. If test ϕn distinguishes H0 : Qn

vs H1 : Pn with risk rpϕnq ď δ then the test ϕ ˝ A distinguishes H 1
0 : Q1

n vs H 1
1 : P 1

n with risk
rpϕn ˝ Aq ď δ ` ε.

We now show two lemmas illustrating that reductions in total variation and dTV interplay nicely.

Lemma 5.2. Suppose we have probability spaces P, P 1, P̃ and algorithm A such that

dTVpP, P̃ q ď δ and P
A

ÝÑε P
1.

Then
P̃

A
ÝÑδ`ε P

1.

Proof. Let X „ P , Y „ P̃ and Z „ P 1. By definition of dTV and since dTVpP, P̃ q ď δ there exists a

coupling pX,Y q such that PpX “ Y q ě 1 ´ δ. Again by definition of dTV and since P
A

ÝÑε P 1 there
must be a coupling pZ,ApXqq such that PpZ “ ApXqq ď ε.

Now note that the coupling of pX,Y q implies we have a coupling pApXq,ApY qq such that PpApXq “

ApY qq ě 1 ´ δ. Thus we have a distribution on pApXq,ApY q, Zq such that with probability at
least 1 ´ ε ´ δ, all entries are equal, i.e. we have ApXq “ ApY q “ Z. Hence forgetting the first
component of the joint distribution we have a coupling pApY q, Zq which has equality with probability

at least 1 ´ ε ´ δ and thus P̃
A

ÝÑδ`ε P
1 as required.

Lemma 5.3. Let P, P1 and P2 be three probability spaces, and A1 and A2 algorithms such that

P
A1

ÝÑε1 P1 and P1
A2

ÝÑε2 P2.

Then
P

A2˝A1
ÝÑ ε1`ε2 P2.

Let f0 be the density of Np0, 1q and fµ be the density of Npµ, 1q, i.e.

f0 “
1

?
2π

expp´x2{2q fµ “
1

?
2π

expp´px ´ µq2{2q

Define the distribution ν via its density function as follows

fνpxq 9
`

2f0pxq ´ fµpxq
˘

1r2f0pxq ě fµpxqs (5.1)

(we write 9 since one would need to normalise by the integral of the RHS of (5.1) in order to get a
probability density function).

For two probability distributions P and P 1 denote by 1
2P ` 1

2P
1 the distribution where with proba-

bility 1
2 one samples from P and with probability 1

2 one samples from P 1, this is called the half-half
mixture of P and P 1.

Lemma 5.4 (follows from Lemma 14 of [1]). Let ν be the probability distribution as defined in (5.1).
If µ ď 1{p6

?
log nq then

dTVp
1

2
ν `

1

2
Npµ, 1q, Np0, 1qq “ opn´3q.

11
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β k = Θ(nβ)

λ= Θ(n−α)

α1/2
0

2 log n

n1/2

n
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β k = Θ(nβ)

1

1/2

k

≡

A

(symmetrised) planted submatrix / biclustering

Figure 4: Reduction from planted clique to (symmetrised) planted submatrix biclustering, as in

Lemma 5.1. The map A is a reduction in total variation distance from G1pn, k “ nβq to ĂBC
1
pn, k “

nβ, λ “ n0.01).

Lemma 5.5. Suppose X1 is independent of X2 and Y1 is independent of Y2. Then

dTVppX1, X2q, pY1, Y2qq ď dTVpX1, Y1q ` dTVpX2, Y2q.

Lemma 5.6. Suppose P and P 1 are two probability distributions on the same space and let X „ P
and Y „ P 1. Suppose that there exist events E1, . . . , Em which partition the space such that for all i
we have

PP pEiq “ PP 1pEiq.

Then
dTVpX,Y q ď max

i
dTVppX|Eiq, pY |Eiqq.

Proof sketch. This lemma follows from the coupling definition of total variation distance. Define
δi “ dTVppX|Eiq, pY |Eiqq. Let ci be a coupling of pX|Eiq and pY |Eiq - we know that such a coupling
ci exists such that pX|Eiq ‰ pY |Eiq, ‘ci fails’, with probability at most δi. Now note that since
PP pEiq “ PP 1pEiq for each i, we may build a coupling c from the set of couplings tciui. Now the
probability that c fails is

Pp‘c fails1q “
ÿ

i

Pp‘ci fails
1|EiqPpEiq.

Now note
ř

i PpEiq, and thus the RHS is a weighted sum of the Pp‘ci fails
1|Eiq with total weight 1,

and thus is at most the max of the terms. Thus we have

Pp‘c fails1q ď max
i

Pp‘ci fails
1|Eiq “ max

i
dTVppX|Eiq, pY |Eiqq.

Hence we have exhibited a coupling between X and Y with failure probability at most the RHS above,
and so dTVpX,Y q is bounded above by the RHS above, as required.

5.4 Reduction from planted clique to a symmetrised planted submatrix

We define a symmetric variant ĂBC of the usual spiked matrix model BC introduced in Section 1.2.
Define a probability space ĂBCpn, k, λq over n ˆ n matrices with real entries. Given the number of

12



vertices n, total community size k and signal strength λ ą 0, define ĂBC “ ĂBCpn, k, λq as follows.

Under ĂBC, independently for each i P rns :“ t1, 2, . . . , nu, the community label σi is sampled such
that σi “ 1 with probability k{n and σi “ 0 with probability 1 ´ k{n, then set Xij “ σiσj For each
pair of vertices i ă j the matrix entry Yij is sampled from

Yij |Xij „

#

N pλ, 1q , Xij “ 1 pi.e. σi “ σj “ 1q

N p0, 1q, Xij “ 0.

and we set Yji “ Yij and the diagonal entries to zero.

We define the (fixed number) symmetric Gaussian model ĄBC1 “ ĄBC1pn, k, λq as above except that we
choose a set S uniformly from all subsets of rns of size k, and set σi “ 1 if i P S and σi “ 0 if i R S.
Thus in this model we have exactly k ‘community’ indices.

Proposition 5.1 ([1]). For all ε ą 0 there is a map A which is a reduction in total variation distance

from H0 : Gpn, 1{2q vs H1 : PCpn, k, 1{2q to H 1
0 : BCp0, 0, 0q vs H 1

1 :
ĂBCpn, k, λ “ 1

lognq.

Proof. We construct an explicit A, and indeed it will map the ijth entry of the adjacency matrix

to the ijth entry of the output matrix. To ensure the vertices in the planted clique are mapped to
indicies in the planted submatrix we ensure that A : r1s Ñ Npλ, 1q the question is how to map zero
entries in the adjaceny matrix.

end L7

L8 exercises

L9Proposition 5.2 ([1]). For any n, k, λ there is a fast map A which is a reduction in total variation

distance 0 from H0 : BCpn, 0, 0q vs H1 : ĂBC
1
pn, k, λq to H 1

0 : BCp0, 0, 0q vs H 1
1 :

ĂBC
1
p2n, 2k, λ{2q.

1

1/2

0 1

β k = Θ(nβ)

λ= Θ(n−α)

α1/2

A

planted submatrix / biclustering

Figure 5: Reduction from the planted submatrix detection to itself. In particular, A is a reduction in
total variation distance 0 from H0 : BCpn, 0, 0q vs H1 : BC1pn, k, 1

lognq to H 1
0 : BCpn1, 0, 0q vs H 1

1 :

BC1pn1, k1, λ1q such that k2λ{n “ k12λ1{n1. See Proposition 5.2.

end L9

L10Given pα, βq for which pα1, β1q can find a reduction (using repeated applications of Proposition 5.2)
from pα, βq Ñ pα1, β1q in the diagram above? Or in detail, from H0 : BCpn, 0, 0q vs H1 : BC1pn, k “
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nβ, λ “ n´αq to H 1
0 : BCpn1, 0, 0q vs H 1

1 : BC1pn1, k1 “ pn1qβ
1

, λ1 “ pn1q´α1

q? One may check that pδ, βq

where δ « 0 may map to approximately px, yq where y “ p1 ´ βqx ` β (an example of the possible
points for β “ 5{16 is shown by the dashed line in Figure 5). end L10

L11

6 Using small subgraph counts to distinguish

We have seen earlier, that a test which thresholds on the number of edges in Gn may sometimes be
enough distinguish H0 and H1 with small risk. However sometimes the expected edges in the two
models may be the same but the numbers of triangles, say, or some larger subgraph, is very different
in the two models. end L11

A List of Planted problems

easyhard

0

impossible

2 log n
√
n n

size of planted clique

Figure 5: Planted clique.
H0: Gpn, 1

2 q random graph on n vertices where each edge is present independently with probability 1{2.
H1: Gpn, k, 1

2 q, random graph on n vertices where each vertex is part of ‘community’ S independently with
probability k{n. Each edge ij is present independently either with probability 1 if i, j P S or with probability
1{2 otherwise. We sometimes take H1 : G1pn, k 1

2 q where S˚ is chosen uniformly at random from all subsets of
vertices of size k.

easy

hard

1

1/2

0 1

β k = Θ(nβ)

λ = Θ(n−α)

α

impossible

1/2

(a) detection

easy

hard

1

1/2

0 1

β k = Θ(nβ)

λ = Θ(n−α)

α

impossible

1/2

(b) recovery

Figure 6: Spiked Matrix Model (planted submatrix with elevated mean).
H0: a random n ˆ n matrix with each entry independent with distribution Np0, 1q.
H1: BCpn, k, λq, an n ˆ n matrix with each index in set S independently with probability k{n. Each entry
independent with distribution Npλ, 1q if i, j P S and with distribution Np0, 1q otherwise.
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easy

hard

1

1/2

0 1

β k = Θ(nβ)

s = Θ(p) = Θ(n−α)

α

impossible

1/2

(a) detection

easy

hard

1

1/2

0 1

β k = Θ(nβ)

s = Θ(p) = Θ(n−α)

α

impossible

1/2

(b) recovery

Figure 7: Planted dense subgraph.
H0: Gpn, qq random graph on n vertices where each edge is present independently with probability q.
H1: Gpn, k, q, sq with s ą 0, random graph on n vertices where each vertex is part of ‘community’ S indepen-
dently with probability k{n. Each edge ij is present independently either with probability q ` s if i, j P S or
with probability q otherwise.

B Concentration Inequalities

Sometimes we are interested in a random variable Xn which is very likely to fall within some interval
ran, bns (and this can be very useful for us!). Often we can prove this statement in two steps. First
we calculate the expected value. Let cn “ ErXns and suppose for simplicity that cn “ pan ` bnq{2.
The second step is to show it is unlikely that Xn is far from its expected value cn; i.e. to show
Pp|Xn ´ cn| ą pan ´ bnq{2q Ñ 0 as n Ñ 8. Note these two steps together prove that Xn lies in ran, bns

whp, i.e. that Ppan ď Xn ď bnq Ñ 1 as n Ñ 8.

We say in this case (i.e. when the second step works), that a random variable is concentrated about its
mean and refer to the bounds below as concentration inequalities. We will use these often so collect
them in this section of the appendix for easy reference.

Lemma B.1 (Hoeffding’s inequality). Let S “ X1 ` . . . ` Xn where X1, . . . , Xn are independent and
a ď Xi ď b for all i. Then

P
`

| S ´ ErSs | ě t
˘

ď 2 exp

ˆ

´
2t2

npa ´ bq2

˙

.

P pBinpn, pq ą c0{p0q ď P p|Binpn, pq ´ np| ą np ´ c0{p0q

So in the notation above t “ np ´ c0{p0, want npp ´ c0{pp0nqq2 large.

Lemma B.2. Let X „ Npµ, σ2q. Then

P
`

| X ´ ErXs | ě t
˘

ď 2 exp

ˆ

´
t2

2σ2

˙

.
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C Probability Background

We will use many properties of the distributions, we collate these here for reference while reading the
proofs or doing exercises.

C.1 General Probability

We say a sequence of events En holds whp ‘with high probability’ if PpEnq Ñ 1 as n Ñ 8.

C.2 Normal Distribution

The following lemma shows the max of m Np0, 1q variables is not too big. Note the variables
X1, . . . , Xm need not be independent.

Lemma C.1. Let ε ą 0. Suppose X1, . . . , Xm „ Np0, 1q. Then

Xmax “ max
iP1,...,m

Xi ď
a

p2 ` εq logm

with probability tending to 1 as m Ñ 8.

D Helpful Combinatorial notation and inequalities

The notation
`

n
k

˘

read ‘n choose k’ is the number of ways to pick a set of k items from a set of n items,

ˆ

n

k

˙

“
npn ´ 1q . . . pn ´ k ` 1q

kpk ´ 1q . . . 1
“

n!

pn ´ kq!k!

and
pn ´ k ` 1qk

kk
ď

ˆ

n

k

˙

ď nk.

D.1 Big ‘o’ notation

We will use notation Op.q, op.q, ωp.q and Ωp.q.
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