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Abstract

This concerns three random bipartite graph models. For each random graph model a
binomially based model is explicitly constructed which has the property that for ‘most’
degree sequences (s, t), the probability of (s, t) in the graph model is asymptotically
approximated by the probability of (s, t) in the binomial model. This allows us to prove
Theorems 7.4 and 7.5 which are the bipartite analogue of Theorem 2.6 in the paper by
McKay and Wormald [MW97]. This construction is new as are Theorems 7.4 and 7.5.
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Introduction

This thesis concerns random bipartite graphs.

We define the key parameters of bipartite graphs. This follows the notation of [GM09].

For m, n 2 N, define N = mn and Im,n = {0, 1, . . . , n}m ⇥ {0, 1, . . . ,m}n. We define an
(m + n)-tuple (s, t) 2 Im,n and denote the components of the m-tuple s, by s

1

, s
2

, . . . , sm

and the n-tuple t, by t
1

, . . . , tn. Define the averages s = 1

n

Pm
j=1

sj and t = 1

m

Pn
k=1

tk.

We can now define a bipartite graph on (m, n) vertices. It has a left vertex set U =
{u

1

, u
2

, . . . , um} (drawn white) and right vertex set V = {v
1

, v
2

, . . . , vn} (drawn black).
We also define an edge set E ✓ { (uj, vk) : uj 2 U, vk 2 V }. We call the number
of edges incident with a vertex the degree of that vertex. Denote the degree of uj by sj

and the degree of vk by tk. The degree sequence of the graph is then (s, t) as defined above.

We also define the edge-density, �, of a bipartite graph. Observe that the number of
edges in a bipartite graph can be determined by counting up the degrees of either side,
so #edges =

P

j sj =: �mn.

We illustrate these concepts in Figure 1.

There is a natural bijection between bipartite graphs on (m, n) vertices and m⇥n binary
matrices where an edge between white vertex uj and black vertex vk corresponds to a
‘1’ in the jth row and kth edge. Likewise the absence of an edge indicates a ‘0’ in the
corresponding position of the binary matrix. Hence this work can be thought of in this
context. For instance, the degree of vertex uj a graph would become the row sum of the
jth row in the corresponding matrix.

This thesis concerns probability spaces over bipartite graphs. Let m, n be integers and let
p = p(m, n) be a function into [0, 1]. We define a random bipartite graph with m white
vertices and n black vertices of the other. In this random graph, each of the mn possible
edges is present independently with probability p(m, n). We call the resulting probability
space the graph p-model and denote it by Gp.
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sj = deg(uj) tk = deg(vk)

#edges =
P

j sj =
P

k tk

Figure 1: This gives a representation of a possible bipartite graph on (m, n) vertices. In
the graph there are four edges incident with black vertex v

2

and so t
2

= 4.

The graph p-model, Gp defined above is one way to define a random bipartite graph. We
also define two other models for random graphs, the graph edge-model, denoted GM , and
the graph half -model, denoted G

t

. In the graph edge-model, let M be an integer between
zero and mn. We then set each possible bipartite graph G(m, n) with M edges to have
equal probability.

The graph half -model gets its name because we specify the degrees of the n black ver-
tices. All bipartite graphs whose black degrees match those prescribed are then chosen
with equal probability. We thus have three di↵erent random graph models, Gp,GM and
G

t

i.e. three di↵erent ways of choosing a graph at random.

Of interest is the probability distribution of the degree sequence of a random graph as
the number of vertices becomes very large. We consider the case when the ratio of white
to black vertices is close to one. This is studied for each random graph model.

Hence our problem becomes to find the probability of a graph having a given degree se-
quence (s, t) in each of our graph models. This we could calculate if we knew the number
of bipartite graphs that can be constructed with degree sequence (s, t). Our starting
point is a theorem by Greenhill and McKay [GM09] which has done this enumeration for
bipartite graphs that satisfy certain conditions on the degree sequence. We term such
degree sequences (", a)-regular.

vi
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We display the enumeration formula in the following theorem. Even without understand-
ing every term seeing the general form will help explain the direction of this thesis. We
refer the reader ahead to Theorem 2.8 for a full statement of the result. (Below, |B(s, t)|
indicates the number of bipartite graphs with degree sequence (s, t) and the constant b
in the error term is in the interval (0, 1

2

).)

Theorem 0.1 (Greenhill and McKay). For (", a)-regular⇤ degree sequences:

|B(s, t)| =
✓

mn

�mn

◆

�1

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

⇥ exp

 

� 1

2

⇣

1�
P

j(sj � s)2

�(1� �)mn

⌘⇣

1�
P

k(tk � t)2

�(1� �)mn

⌘

+ O(n�b)

!

(0.1)

A natural question which arises given this counting result is how common these well-
behaved (", a)-regular degree sequences are in our random graph models. We show that
(", a)-regular degree sequences account for the bulk of the probability space in each of the
three random graph models.

Result 1†: (", a)-regular degree Sequences

For each random graph model, asymptotically,
almost all degree sequences are (", a)-regular.

Note that if a degree sequence (s, t) is both (", a)-regular and

⇣

1�
P

j(sj � s)2

�(1� �)mn

⌘⇣

1�
P

k(tk � t)2

�(1� �)mn

⌘

= O(n�b),

then this simplifies the formula by McKay and Greenhill above. We call such sequences
non-pathological.

Result 2‡: Pathological degree sequences

For each random graph model, asymptotically, the probability
a degree sequence is pathological tends to zero.

After proving the previous two results we are in a good position. In each model, except for
rare (i.e. pathological) degree sequences we have an asymptotic count for the number of

⇤(", a)-regular degree sequences, see Definition 2.7
†For the precise statement of this result for graph models Gp, GM and G

t

see Lemmas 4.8, 5.1 and 6.1
respectively.

‡We show this result for models Gp, GM and G
t

in Theorems 4.9, 5.2 and 6.20 respectively.
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bipartite graphs with that degree sequence. From these counts we derive the approximate
probability of finding a graph with that given non-pathological degree sequence. To get
to this point comprises the bulk of the thesis, up until the end of Chapter 6.

For all but pathological degree sequence the formula in (0.1) simplifies and these patho-
logical degree sequences are rare in our random bipartite graph models. This means that
for ‘most’ degree sequences we are able to find a simple asymptotic count for the number
of bipartite graphs with that given degree sequence.

We explicitly construct binomial models BM ,B
t

and Vp based on binomially distributed
random variables subject to certain constraints§. Let the binomial models BM ,B

t

and Vp

correspond to the graph models GM ,G
t

and Gp respectively.

Then these binomial models have the property that, for each degree sequence, the prob-
ability of that degree sequence occurring in the random graph model and the probability
of it occurring in the corresponding binomial model are very close. This is an original
result and is the culmination of all calculations in the thesis.

We summarise this result below. Each random graph model can be approximated by one
of these newly defined binomial models in the following fashion.

Result 3¶

There exist probability spaces, BM ,B
t

and Vp such
that for any non-pathological degree sequence (s, t),

P
BM (s, t) = P

GM (s, t)(1 + O(n�b))

P
B

t

(s, t) = P
G

t

(s, t)(1 + O(n�b))

P
Vp(s, t) = P

Gp(s, t)(1 + O(n�b)).

(An explicit construction is given for each probability space.)

Each of these newly constructed binomial spaces is based on binomial random variables
subject to constraints on their sum. This has interesting theoretical implications. Con-
sider the degree of a fixed vertex in the random bipartite graph p-model, Gp. This vertex
alone has a binomial distribution. Moreover, vertices of the same colour have independent
degrees. However, vertices of di↵erent colours have degrees which are dependent. Our
results will enable us to begin to quantify the magnitude of this dependence.

§For the constructions see Definition 7.3 of BM , Definition 7.5 of B
t

and Definition 7.7 of Vp.
¶This result appears as three separate Theorems in this thesis. We prove BM ⇠ GM in Theorem 7.1,

B
t

⇠ G
t

in Theorem 7.2 and lastly Vp ⇠ Gp in Theorem 7.10.
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Literature review and background
theory
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Chapter 1

Preliminaries

1.1 Definitions

1.1.1 Probability

To be able to define what is meant by a random graph and also to make a meaningful sur-
vey of previous results we need some probability theory. We give the necessary probability
theory background for the content of the preliminary section (Part I). Later in Chapter 3
we detail the remaining probability results that are needed for the main body of the thesis.

Many objects and functions studied in probability are special cases of familiar concepts
from measure theory. We set out the some of the definitions we will require.

Definition 1.1 (Probability space). Suppose we have a measure space which is defined
by the triple (⌦, ⌃, µ). If µ(⌦) = 1 then the triple (⌦, ⌃, µ) is a probability space and µ
is a probability measure.

Observe that if the measure µ satisfies µ(⌦) = k < 1, then it naturally determines a
probability measure µ0(X) := 1

k
µ(X). This is referred to as normalisation.

In a probability space we will often denote the measure by P.

Definition 1.2 (Random variable). Let (⌦, ⌃, P) be a probability space. Suppose we have
a function X : ⌦ ! R, then X is a random variable if for each r 2 R,

{! : X(w)  r} 2 ⌃ (1.1)

In this thesis we will deal only probability spaces (⌦, ⌃, P) where |⌃| is finite and ⌃ =
P(⌦). In this special case every subset of ⌦ is an element of ⌃ and so the requirement
(1.1) will hold for any function X : ⌦ ! R.

2



1.1. Definitions

The capital letters X, Y will be used to denote random variables, whilst the lowercase x, y
used to denote particular events in ⌃. We denote the probability of the random variable
X taking value x as P(X = x).

Definition 1.3 (Expected value). Let X, be a random variable defined on the finite
probability space (⌦, ⌃, P). Then the expected value of X is defined by

E(X) :=
X

x2⌦

xP(X = x).

In this thesis we will find that some of the random variables defined on our random
graph models have probability distributions that are well-known. For example, let Sj

be the random variable which returns the degree of the jth white vertex in Gp. For any
1  j  m we note in (2.2) that the degree of white vertex uj has a binomial distribution
with parameters (n, p), in the graph p-model, Gp.

We define the probability distributions we will encounter. In the following definitions we
let [n] = {0, 1, . . . , n}.

Definition 1.4 (Binomial distribution). Let ([n],P([n]), P) be a probability space and X
be a real-valued random variable on this space. Then we say X is binomially distributed
with parameters (n, p), if for each 0  r  n,

P(X = r) =

✓

n

r

◆

pr(1� p)n�r.

Definition 1.5 (Poisson distribution). Let (⌦, ⌃, P) be a probability space and X be a
real-valued random variable on this space. Then we say X has a Poisson distribution with
parameter c, if for each r 2 N,

P(X = r) =
1

r!
e�ccr.

1.1.2 Random bipartite graphs models

In this section we define our models and state some of their elementary properties. First
we will need a little more notation than has already been defined on p.v. We will then
define the random bipartite graph models, i.e. probability spaces over bipartite graphs.

Notation The total number of edges in a bipartite graph can be determined from its
degree sequence by summing the degrees of either side. Hence a necessary condition for

3



Chapter 1. Preliminaries

an (m + n)-tuple, (s, t), to correspond to a degree sequence of a bipartite graph is that
P

j sj =
P

k tk. With this motivation we define the following subsets of Im,n,

Em,n := {(s, t) 2 Im,n |
X

j

sj =
X

k

tk} (1.2)

Em,n,M := {(s, t) 2 Em,n |
X

j

sj = M} (for 0 M  mn) (1.3)

Em,nt

0 := {(s, t) 2 Em,n | t = t

0} (for n-tuples t

0). (1.4)

Random variables This thesis will consider the following random variables on graphs.

For 1  j  m, let Sj be the random variable which returns
the degree of the white vertex uj and define S := 1

m

P

j Sj.

For 1  k  n, let Tk be the random variable which returns
the degree of the black vertex vk and define T := 1

n

P

k Tk.

Define S := (S
1

, . . . , Sm) and T := (T
1

, . . . , Tn).

The models The notation we defined for our random bipartite graph models is consis-
tent with that used for the general random graph models considered in [MW97]. There
are two main random models for general graphs1, Ĝp and ĜM . Refer to Section 2.1 for a
definition of these models and some important results in general (non-bipartite) random
graph theory.

As direct analogues of these in the bipartite case we define bipartite random graph mod-
els; the graph p-model, Gp, and the graph edge-model, GM . We also define a model unique
to bipartite graphs, the graph half -model, G

t

.

These three models are all probability spaces with the same domain, the set of all bipartite
graphs on (m, n) vertices. Denote this domain by Bm,n and write 2Bm,n for the power set
of Bm,n. Then we can express the probability spaces formally as (Bm,n, 2Bm,n , �), where
only the probability measure, �, di↵ers between the three models.

Graph p-model, Gp This model of a random bipartite graph appears in [GLS99], [Pal88]
and [Pal84].

1Refer to the first section, The Basic Models, in the chapter on Random Graphs in the book, Modern
Graph Theory, by Bollobás [Bol98]

4



1.1. Definitions

Definition 1.6 (Graph p-model, Gp). The graph p-model, Gp(m, n) = (Bm,n, 2Bm,n , P
Gp)

has domain the set of all labelled bipartite graphs on (m, n) vertices . A graph is chosen
at random by selecting each of the possible mn edges independently with probability p.

Hence in this model, the probability of a particular graph H with (m, n) vertices and |H|
edges is, P

Gp(H) = p|H|qmn�|H|.

For any degree sequence (s, t) 2 Em,n we are interested in the probability that a random
graph in the graph p-model, Gp, has this degree sequence. The probability of the degree
sequence (s, t) in the graph p-model written,

P
Gp

�

s, t
�

:= P
Gp

�

H : the degree sequence of H is (s, t)
�

.

If we represent a bipartite graph as a binary matrix then the Gp(m, n) model corresponds
to an m⇥ n matrix where each entry is independently chosen to be a 1 with probability
p (and a zero with probability q = 1 � p). Thus for an (m + n)-tuple (s, t), P

Gp(s, t) is
the probability that a binary matrix chosen at random in this way will have row sums s

and column sums t.

Graph edge-model, GM This model of a random bipartite graph appears in [GLS99],
[ER61] and [Pal84].

Definition 1.7 (Graph edge-model, GM). The graph edge-modelGM = GM(m, n,M) has
support the set of all labelled bipartite graphs on (m, n) vertices with M edges. We define
each of the

�

mn
M

�

di↵erent graphs in the support to be equiprobable.

Hence in the graph edge-model, the probability of a particular graph H with M edges
vertices is P

GM (G) =
�

mn
M

�

�1

. Also notice that choosing a graph at random in the graph
edge-model, GM corresponds to placing M ones in an m⇥ n binary matrix where each of
the

�

mn
M

�

arrangements are equally likely.

For any degree sequence (s, t) 2 Em,n,M we are interested in the probability that our
random graph in the graph edge-model, GM , has this degree sequence. For the probability
of the degree sequence (s, t) in the graph edge-model we will write,

P
GM

�

s, t
�

:= P
GM ({H : the degree sequence of H is (s, t)}).

A consequence of the definitions of Gp and GM is that for 0  M  mn and 0 < p < 1
then given any event A ⇢ 2Bm,n we have

P
GM (A) = P

Gp

�

A | M edges
�

.

5



Chapter 1. Preliminaries

We now give an example. In Figure 1.1 we show the three bipartite graphs with degree
sequence ((1, 3, 1, 1), (2, 1, 3)). We subsequently calculate the probability of this degree
sequence occurring in each of the two random graph models we have defined.

Bipartite graphs with vertices (m, n) = (4, 3)

Figure 1.1: The three possible bipartite graphs with degree sequence ((1,3,1,1), (2,1,3)).

The total number of bipartite graphs on (4, 3) is 212 = 4096, of these,
�

12

6

�

= 924 of these
have precisely 6 edges. Hence,

P
G

p=1
2

((1, 3, 1, 1), (2, 1, 3)) = 3
4096

P
GM=6((1, 3, 1, 1), (2, 1, 3)) = 3

924 = 1
308

Graph half -model, G
t

Unique to bipartite graphs we can define a third random graph
model. In the graph half -model we fix the degrees of the vertices on one side. Our con-
vention will be to fix the degrees of the black vertices.

Definition 1.8 (Graph half -model, G
t

.). The graph edge-model G
t

= G
t

(m, n, t) has
support the set of all labelled bipartite graphs on (m, n) vertices such that the degrees of
the black vertices agree with those in a specified n-tuple t. We define each of the di↵erent
graphs in the support to be equiprobable.

The graph half -model, G
t

, is equivalent to the probability space over all m ⇥ n binary
matrices with column sums t where each matrix is weighted equally.

Observe that in the graph half -model, the probability of a particular graph H on (m, n)

vertices with black degree sequence matching the n-tuple t = (t
1

, . . . , tn) is
⇣

�

m
t1

��

m
t2

�

. . .
�

m
tn

�

⌘

�1

.
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1.1. Definitions

Let M =
P

k tk. For any degree sequence (s, t) 2 Em,n,M we are interested in the
probability that our random graph in the half -model, G

t

, has this degree sequence. The
probability of the degree sequence (s, t) in the graph half-model is written,

P
G

t

(s, t) := P
G

t

({H : the degree sequence of H is (s, t)}).

A consequence of this definition is that for any n-tuple t and 0 < p < 1 then given any
A ⇢ Im,n,t we have

P
G

t

(A) = P
Gp

�

A | T = t

�

.

Example Suppose we want to find the probability of degree sequence ((1, 3, 1, 1), (2, 1, 3))
given we know that the degree sequence of the black vertices is (2, 1, 3), i.e. we want to
calculate P

G

t=(2,1,3)
((1, 3, 1, 1), (2, 1, 3)).

We first calculate the total number of di↵erent bipartite graphs on (4, 3) vertices with the
prescribed degrees (2, 1, 3) for the black vertices. Consider vertex v

1

, there are two edges
incident with this vertex creating

�

4

2

�

= 6 distinguishable positions for these two edges.
Hence there are

�

4

2

��

4

1

��

4

3

�

= 96 distinguishable bipartite graphs with the required black
vertices degree sequence. As illustrated by figure 1.1 on p6 there are three graphs with
white vertex degree sequence (1, 3, 1, 1) and black vertex degree sequence (2, 1, 3). Hence,

P
G

t=(2,1,3)
((1, 3, 1, 1), (2, 1, 3)) = 3

96 = 1
32 .

Other models An interesting and general model is suggested by Palka in [Pal87]. A
random graph is chosen with reference to an initial graph in the following way. Each edge
of the initial graph remains with probability p (i.e. is deleted with probability q = 1� p)
and no new edges are added to the graph.

There are two important special cases. In the bipartite case, if we take the initial graph,
to be the complete graph on n vertices then this is the Ĝp(n) model defined earlier and
if we take the initial graph to be the complete bipartite graph on (m, n) vertices then we
have the bipartite graph p-model, Gp, which we introduced in Definition 1.6.

1.1.3 Big ‘O’ notation

We will be dealing with the asymptotic properties of real functions of two variables m
and n.

7



Chapter 1. Preliminaries

Definition 1.9 ( f(m, n) = O(g(m, n)) as m, n!1 subject to C). Suppose that
f, g : N⇥ N ! R and C is a predicate on N⇥ N. Then we say ‘f(m, n) = O(g(m, n)) as
m, n!1 subject to C’ if

if there are constants A, N > 0 such that

|f(m, n)|  A|g(m, n)| whenever m, n � N and (m, n) satisfies C.

The corresponding term for little ‘o’, f(m, n) = o(g(m, n)) as m, n ! 1 subject to C is
defined analogously.

In our case m and n will be the number of white and black vertices respectively. We will
consider asymptotic results, as our graphs get large, where we also require that the two
sets of vertices are not too di↵erent in size.

The following section is not required for understanding. It gives possible motivation for
why one might want to define random bipartite graphs in the form of a toy example. A
detailed calculation in the G

t

model is also included.

1.2 Motivating example: malaria transmission

Many biological systems are naturally modelled by random bipartite graphs. See for ex-
ample [ZS02]. We define a toy example below.

Say we are modelling a system of n mosquitoes and m people. Label the mosquitoes
u

1

, u
2

, . . . , um and the people v
1

, v
2

, . . . , vn and draw each as a vertex of a graph. Malaria
can be spread when a mosquito (uk) bites a person (vj) which we denote by drawing an
edge between uk and vj.

There are no edges between any two vertices ui and uj because there is human to human2

transmission of malaria (and similarily no mosquito to mosquito transmission ensures no
edges between the vj and vk). This ensures that the graph drawn to convey this infor-
mation will be bipartite. The requirement that each mosquito can only bite each person
once ensures that the graph has no multiple edges.

2forgetting blood transfusions
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1.2. Motivating example: malaria transmission
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Here, sj, the degree of uj, is the number of people bitten by the mosquito, uj, and tk
denotes the number of bites person vk received. We have defined our bipartite graph
representation of the malarial model and now can detail the interpretation of our random
graph models: Gp,GM ,G

t

. We also illustrate the malarial interpretation of G
t

with a de-
tailed calculation.

In the following three examples a bipartite graph is chosen at random from the bipartite
graph models Gp, GM and G

t

respectively. Suppose we interpret the random graph gener-
ated as the bite pattern observed after a night with m mosquitos and n people left in the
same room. We list the assumptions about the spread of malaria implicit in each model.

Malaria interpretation of the graph p-model Gp.
Assumption: Between each mosquito and human there is an equal and independent
probability, p, of a bite occurring.

Malaria interpretation of the graph edge-model GM .
Assumption: Overnight there are M bites altogether. Between each mosquito and hu-
man there is an equal likelihood of a bite occurring.

Malaria interpretation of the graph half -model G
t

.
Assumption: Overnight the number of bites each person received is recorded in an or-

9



Chapter 1. Preliminaries

dered3 n-tuple t = (t
1

, t
2

, . . . , tn). All combinations of particular mosquitoes causing bites
to the humans that yield the recorded bites (i.e. the correct t) are equally likely.

Suppose we are interested in the number of bites made by each of the mosquitoes. For
example we may want to know the likelihood that one mosquito makes greatly many more
bites than the other mosquitoes. In this case it would become very critical whether or
not this highly active mosquito was infected with malaria. We record the number of bites
each mosquito receives in a m-tuple s = (s

1

, s
2

, . . . , sm). Then the probability that all
mosquitoes make the number of bites encoding in s given that the people were bitten as
in t is precisely P

G

t

(s).

Toy Example: Consider a system with five people in a room overnight with two mosquitos.
The people, in alphabetical order, were bitten 1,1,2,2 and 1 times. It is unknown which
mosquitoes caused these bites.

We assume that any scenario, under which the people were bitten the prescribed number
of times, is equally likely. That is, we assume that any bipartite graph with a degree
sequence of (1,1,2,2,1) for the black vertices is equally likely. We draw each of these bi-
partite graphs below and list the degree sequence of the white vertices for each graph.

We find the probability that the first mosquito, u
1

, makes 3 bites and the second

mosquito, u
2

makes 4 bites. i.e. P
G

t

(S = (3, 4)).

P
G

t

�

S = (3, 4)
�

= P
GM=7

�

S = (3, 4) | T = (1, 1, 2, 2, 1)
�

= 3

8

Similarly the probability that the mosquitos make 2 and 5 bites respectively is,

P
G

t

�

S = (2, 5)
�

= P
GM=7

�

S = (2, 5) | T = (1, 1, 2, 2, 1)
�

= 1

8

3i.e. tk is the number of bites received by the k-th person, E vk.
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Figure 1.2: All bipartite graphs on (2, 5) vertices with black degree sequence (1, 1, 2, 2, 1)
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Chapter 2

Literature review

This thesis concerns the asymptotic behaviour of random bipartite graphs.

The general field of random graphs originated with an influential paper of Erdős and
Rényi, [ER61] (see Section 2.1.1). One of the key properties introduced in [ER61] was
that small changes in the initial parameters could lead to abrupt changes in the asymp-
totic behaviour of random graphs. This behaviour has been likened to phase transitions
in physics and hence began the interest in what are termed threshold functions in random
graphs. Threshold functions are discussed in 2.1.2.

The particular aspect of random graphs that we consider is the asymptotic behaviour of
vertex degrees. Results in this area for both the general and bipartite cases are (briefly)
surveyed in Sections 2.1.3 and 2.2.1 respectively.

We also compile some graph theory results counting the asymptotic number of graphs with
a particular degree sequence. Enumeration results have been used to construct binomial
models which approximate the general random graph models in [MW97]. Some results
from this paper are described in Section 2.1.4. This thesis could could be considered a
bipartite analogue of [MW97]. We proceed from a bipartite graph enumeration result to
show that the asymptotic probabilities of degree sequences in random bipartite graphs
can be approximated by binomial models. The bipartite enumeration result we use is
from [GM09]. We give details of this result in Section 2.2.2.

The material in this chapter comes under three general headings: analogous results, pre-
vious work not used in this thesis and previous work on which this thesis builds. The
only section which we will directly make use of is Section 2.2.2 in which we give results on
the asymptotic enumeration of bipartite graphs. Section 2.1.4 covers a result in general
graph theory which is analogous to our work. The remainder of the literature review will
not be needed in the thesis but serves to give context for our results.
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2.1. General random graphs

2.1 General random graphs

2.1.1 Early results

The field of random graphs began with two influential papers of Erdős and Rényi, [ER61]
and [ER59].

A random graph. To define a random graph it is necessary to construct a domain
from which it is sampled and a way in which it is sampled from that domain. For the
traditional non-bipartite case, two models, Ĝp(n) and ĜM(n), are the most extensively
studied. (These models are analogous to Gp(m, n) and GM(m, n) which we will later de-
fine for bipartite graphs. The hat over the G in our notation is not usual but used here
to avoid confusion between the general case and the bipartite case.)

There is an interesting construction introduced by Janson in [Jan94] which allows us to
define both models (Ĝp(n) and ĜM(n)) at the same time. Begin with n labelled vertices.
Let t

1

, . . . , t(n
2)

be times distributed uniformly at random in (0, 1), then labelled in as-

cending order. We now add an edge at random at each time ti. This yields a random
graph in Ĝp(n) at time p 2 (0, 1) but also a random graph in ĜM(n) at the M th time, tM .

When Erdős and Rényi’s paper [ER59] was published, an already famous topic in tradi-
tional (non-random) graph theory was the chromatic number of graphs.

Chromatic number, �. The chromatic number of a graph G, denoted �(G), is defined
to be the number of colours required to colour the vertices of G in such a way that any
two vertices connected by an edge in G are coloured di↵erently.

Theorem 2.1 (Erdős and Rényi [ER61]). Let G be a random graph in ĜM(n) with pa-
rameter M = M(n). Fix positive constants c < 1

2

and k. Then as n ! 1 the following
results hold almost surely,

�(G) = 2 if M(n) = o(n),
�(G) = 3 if M(n) = cn,

and �(G) > n
k

if M(n) =
�

n
2

�

� o(n2(1�1/k)).

This would be the first result on the chromatic number of a random graph. Much later, it
was shown by [SS87] and [ Luc91] that the chromatic value of a random graph G in Ĝp is
almost surely within one of the expected chromatic value over all graphs in Ĝp. This is a
seminal result in random graph theory. The paper [SS87] is also of particular interest to
us as it applies a powerful probabilistic technique, Doob’s martingale process. A similar
application of this technique is central to our proof that pathological degree sequences are

13



Chapter 2. Literature review

rare in the graph half -model, G
t

. We give an indication of the proof in [SS87] in Section
3.2.4.

Notice that in Theorem 2.1, varying the value of the parameter M(n) changed the likely
chromatic number of a graph picked at random from Ĝp. This is an example of a threshold
function on random graphs, a class of functions introduced in [ER61].

2.1.2 Threshold functions

Erdős and Rényi’s paper [ER61] sparked a flurry of papers deriving the threshold functions
for di↵erent properties of random graphs. Examples include ....
These many isolated results were set in a general framework by Bollobás and Thomason in
[BT87]. They gave a non-constructive proof showing the existence of threshold functions
for a wide class of properties on graphs. We give this result below in Theorem 2.2, but
prior to this we must make some definitions.

In this section we work in the probability space ĜM(n) where every graph on n vertices
with M edges is equally likely. Consider this space for di↵erent values of the parameter
M(n). Let G(n) be the set of all labelled graphs on n vertices.

A property Q is monotone increasing on G(n) if graph A 2 G(n) satisfying Q implies that
any graph B 2 G(n) for which A is a subgraph must also satisfy Q. A non-trivial property
is one such that the set of graphs G 2 G(n) for which the property holds as well as the set
of graphs G0 2 G(n) for which the property fails are both non-empty. For example, the
property of having a triangle as a subgraph is a non-trivial monotone increasing property
on the set G(n) for n � 3.

Notice that if a property is non-trivial and monotone increasing then Q must hold for
the complete graph and fail for the empty graph. Hence we have P

ˆ

GM=0
(Q) = 0 and

P
ˆ

G

M=(n
2)

(Q) = 1. This is important as it guarantees the existence of the function M⇤(n)

in Theorem 2.2. (The expression, P
ˆ

GM
(Q), is the probability that a graph chosen at ran-

dom from those with M edges will have property Q. The hat over the G is to indicate that
we are working in the space of general random graphs and not random bipartite graphs.)

We are now ready to state the Bollobás and Thomason’s Theorem showing general ex-
istence of threshold functions. This appeared as Theorem 4 in their 1985 paper [BT87].
Their original theorem is for more general sets, but we give the result only as it applies
to random graphs in ĜM .

Theorem 2.2 (Bollobás & Thomason 85). Let Q be a monotone increasing property on
the set of all labelled graph on n vertices, G(n). Define the function M⇤(n) = max{l :

14



2.1. General random graphs

P
ˆ

GM=l
(Q)  1

2

} and let w(n)!1.

Then for any M(n) M⇤(n)/w(n),

P
ˆ

GM
(Q)  1� 2�1/w,

and for any M(n) � (M⇤(n) + 1)w(n),

P
ˆ

GM
(Q) � 1� 2�w.

In the theorem the function M⇤(n) is a threshold function for Q. Hence to show the
existence of a threshold function for any property by this theorem it is su�cient to show
that the property is non-trivial and monotone increasing. In many cases this is not hard1.

2.1.3 Vertex degrees

There are two excellent surveys of this area, chapter 3 of [Bol01] and section two on [Pal88].

In the subject of vertex degrees in general random graphs it is the behaviour of two
random variables that are the most studied. We define these below,

Let X(r) be the random variable that returns the rth largest degree in the graph
and let ⇣r be the random variable that returns the number of vertices of degree r.

Number of vertices of degree r. We will first consider the random variable ⇣r. For
a fixed r, the likely value of ⇣r is dependent on the expectation of ⇣r. The following result
appears in [Bol01] and is from Bollobás’ paper [Bol82].

By almost surely we mean with probability tending to one as n!1.

Lemma 2.3 (Bollobás 82). Fix t 2 R+ and " > 0. Let Ĝp = Ĝp(n) where p(1�p) � "n�3/2.
Then almost surely,

⇣r = 0 if E
ˆ

Gp
(⇣r)! 0

⇣r � t if E
ˆ

Gp
(⇣r)!1.

Also, if E
ˆ

Gp
(⇣r) = c,

80  k  n, P
ˆ

Gp

�

⇣r = k)! 1

k!
e�cck.

1For example consider the property of having a particular non-empty subgraph H on k vertices for any
k  n. This property is non-trivial and monotone increasing on the set G(n). (Why? Observe H is not
a subgraph of the empty graph and is a subgraph of the complete graph so the property is non-trivial.
Also, if H is a subgraph of the graph A and A is a subgraph of B then B contains all the edges of A and
so H must be a subgraph of B. Hence the property is also monotone increasing and so we are done.)

15



Chapter 2. Literature review

Note that this last results is often written as ⇣r ⇠ Po(c) where Po(c) denotes the Poisson
distribution with parameter c. Results similar to Lemma 2.3 hold for the distributions
of the number of vertices with degree at least r and also for the number of vertices with
degree at most r (see [Bol01][p.63]).

The rth largest degree. Let d
(r) be the random variable which takes the value of the

rth largest degree. Naturally two particular values of r are the most studied, namely d
(1)

the maximum degree and d
(n)

the minimum degree.

For suitable p these minimum and maximum degrees are unique. This was shown by
Erdős and Wilson in [EW77]. The following theorem appears in [Bol01].

Theorem 2.4 (Erdős and Wilson 1977). Let Ĝp = Ĝp(n) for some p < 1

2

such that
pn
ln n
! 1. Let A be the event that a graph has both a unique minimum and a unique b

maximum degree. Then as n!1,

P
ˆ

Gp
(A)! 1.

The probability that the maximum degree is unique depends on the value of the parameter
p. For example, if p = o( 1

n
ln n) then almost surely neither the maximum nor minimum

degree is unique [p.68][Bol01].

There are results which show that sometimes this almost sure uniqueness can be extended
beyond the maximum and minimum degrees. Fix i. Let Bi be the event that the largest
i degrees are all unique, i.e. d

(n�i+1)

< . . . < d
(n)

. Palka, in Lemma 2.1.2 of [p.17][Pal88]
provides conditions under which P

ˆ

Gp
(Bi)! 1 as n!1.

2.1.4 Approximation by binomial models

The paper by McKay and Wormald [MW97] constructs random models based on binomial
variables that approximate the distribution of degree sequences in random graphs as the
number of vertices gets arbitrarily large. This paper is of particular interest to us as their
results, which concern general random graphs, are analogous to the results we prove for
bipartite random graphs.

We describe the enumeration result, Theorem 2.5, which forms the starting point for their
paper [MW97].

Enumeration results Havel and Hakimi independently found the conditions under
which an n-tuple is the degree sequence of a graph on n vertices in [Hav55] and [Hak62]
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2.1. General random graphs

respectively. In lieu of a simple closed form solution, much work has been done finding
asymptotic results for the number of graphs with given degree sequence. We are interested
in the following enumeration result, also by McKay and Wormald, in [MW90]. (Let |G(d)|
denote the number of graphs on n vertices v

1

, . . . , vn such that the degree of each vi is di.
Also, write � =

�

n
2

�

�1

P

i di and d = 1

n

P

i di.)

Theorem 2.5 (McKay & Wormald 90). Suppose d is an n-tuple such that for each 0 
i  n, |di�d|  n1/2+" and �, 1�� � c

log n
for some c > 4

3

. Let � = (n�1)�2

Pn
i=1

(di�d)2.
Then,

|Gn(d)| =
p

2
n
Y

i=1

✓

n� 1

di

◆

exp
⇣1

4
� �2

4�2(1� �)2

+ o(1)
⌘

.

Binomial models McKay and Wormald construct binomially based models which will
later be shown to approximate the random graph models closely. Each model is based on
independent binomially distributed random variables with parameters (n � 1, p) subject
to certain constraints.

Observe that in Ĝp if one considers a particular vertex vi then there are n� 1 other ver-
tices and an independent probability p of joining to each one. Thus the degree of vi is
binomially distributed with parameters (n � 1, p). We note however that the degrees of
two di↵erent vertices vi and vj are not independent; for example if the degree of vi is n�1
then there must be an edge between vi and vj and so the degree of vj is at least 1. Also
the sum of all the degrees is twice the number of edges in the graph, so in particular the
sum of the degrees must be even. This motivates the first definition.

Let Êp be the space of n binomially distributed random variables with parameters (n�1, p)
subject to even sum.

McKay and Wormald show in Lemma 2.2 [MW97] that,

P
Ep(d) =

✓

1

2
+

1

2
(q � p)2N

◆

�1

pmq2N�m

n
Y

i=1

✓

n� 1

di

◆

2

.

Consider ĜM , the probability space in which every graph with M edges has equal proba-
bility. The aim is to construct ÊM to approximate ĜM .

Let ÊM be the space of n binomially distributed random variables with parameters (n�1, p)
subject to sum M .

Also define an integrated model over n-tuples with even sum,

17
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P
ˆ

Ip
(d) =

2

V (p)
�

1� (q � p)2N
�

n
Y

i=1

✓

n� 1

di

◆

Z

1

0

Kp(p
0)(p0)m(1� p0)2N�m dp0,

where Kp(p
0) =

s

N

⇡pq
exp

⇣

�(p� p0)2N

pq

⌘

and V (p) =

Z

1

0

Kp(p
0) dp0.

Results These binomial models are shown to provide good approximations to the dis-
tribution of the degree sequences in the general random graph models Ĝp and ĜM . McKay
and Wormald original theorem in [MW97] applies to all random variables on any normed
space but we state it here only for real random variables. (Let În be the set of n-tuples
with entries between 0 and n� 1 and having even sum. The theorem holds only for what
McKay and Wormald term acceptable values of the parameters p, M , see [MW97] for the
definition.)

Theorem 2.6 (McKay and Wormald [MW97]). For n � 1, let Xn : În ! R be a random
variable. Let !(n) be any function such that !(n) ! 1 and "(n) be any function such
that "(n)! 0.

Then as n!1 subject to p = p(n) is acceptable,

|E
ˆ

Gp
(Xn)� E

ˆ

Ip
(Xn)| = o(1)E

ˆ

Ip
(|Xn|) + O

⇣

n�!(n) + exp(�"(n)(pqN)1/3)
⌘

max
d2

ˆIn

|Xn(d)|.

Similarly, as n!1 subject to M = M(n) is acceptable,

|E
ˆ

GM
(Xn)� E

EM (Xn)| = o(1)E
EM (|Xn|) + n�!(n) max

d2In,m

|Xn(d)|.

The proof of this result (in [MW97]) involves showing that,

P
ˆ

Gp

✓

1

4
� �2

4�2(1� �)2

= o(1)

◆

(2.1)

is asymptotically very close to 1. The importance of this relates to the enumeration result
in Theorem 2.5. If the value of (2.1) is close to 1 then this means that for ‘most’ degree
sequences in Ĝp, Theorem 2.5 provides a simple asymptotic enumeration for the number
of graphs with that degree sequence.

We will show the bipartite analogue of Theorem 2.6 in Theorems 7.4 and 7.5.
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2.2. Bipartite random graphs

2.2 Bipartite random graphs

Random bipartite graphs relate to another class of random graphs. Let us refer to the
graph on three vertices with every edge present as a triangle. A graph which does not
contain this graph as a subgraph is called triangle free. Asymptotically almost all triangle
free graphs are bipartite [EKR76]. Also, as bipartite graphs contain no odd cycles, all
bipartite graphs are triangle free. Hence results concerning triangle free graphs can imply
results on bipartite graphs and vice-versa.

There are many results for random bipartite graphs concerning what are called ‘match-
ings’. A matching of a graph is a subset, E 0, of the edge set such that each vertex in the
graph is incident with at least one edge in the set E 0. These matching results on random
bipartite graphs are surveyed in []. Janson et. al. use results on matchings in random
bipartite graphs to derive similar results in general random graphs, see [J LR00, p.85].
However, as matchings do not directly concern vertex degrees we will not include these
results in this section.

The work we shall focus on is divided into two sections, the first concerns the vertex
degrees in random bipartite graphs and the second is on enumeration results which count
bipartite graphs by degree sequence.

We include Section 2.2.1 on vertex degrees because it is this field of work in which our
thesis fits. Thus it is important to survey previous results in this area to a give context
to our work.

The enumeration results in Section 2.2.2 are included for a vastly di↵erent reason. In this
thesis we will approximate the probability of finding a particular degree sequence (s, t),
in each of our random graph models. The asymptotic enumeration result forms the basis
for these calculations.

2.2.1 Vertex Degrees

We consider the properties of the degrees of the vertices in random graphs. This is the
body of work into which our results will fit so we make a brief survey of previously known
results in the area. Many results steam from results in the general random graphs that
can also be applied to the bipartite case. Except for the preliminary results none of these
will be needed in the thesis so this section is entirely a literature survey.

There are very few results on the vertex degrees of random bipartite graphs. Many of the
results that have been found stem from similar results on the vertex degrees in general
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random graphs. Thus the results in this section can seem somewhat disjointed as they
mostly follow from their counterparts in the general case rather than having been derived
from other results in bipartite random graph theory. For completeness, we include all re-
sults known to us in the area of asymptotics of vertex degrees in random bipartite graphs.

Preliminary Consider the bipartite graph p-model, Gp(m, n). Fix a white vertex uj

and let Sj be the random variable that returns the degree of uj. By Definition 1.6 of Gp,
there is an independent probability p that uj is joined to each of the n black vertices.
Hence, as noted in [Pal84],

80  r  n, P
Gp

�

Sj = r
�

=

✓

n

r

◆

prqn�r. (2.2)

We say that Sj is binomially distributed with parameters n and p. Let ⇠r be the random
variable which returns the number of white vertices with degree r. By (2.2), each of the m
white vertices has degree r with probability

�

n
r

�

prqn�r. Hence, ⇠r is binomially distributed
with parameters m and

�

n
r

�

prqn�r. By this we mean,

80  k  n, P
Gp

�

⇠r = k
�

=

✓

m

k

◆

 

✓

n

r

◆

prqn�r

!k 

1�
✓

n

r

◆

prqn�r

!m�k

. (2.3)

Result (2.3) appears in [Pal84]. Palka also notes that the converse is true for ⌘r, the
number of black vertices with degree r. This random variable, ⌘r, is binomially distributed
with parameters n and

�

m
r

�

prqm�r.

Number of vertices of degree r Godbole et. al. in [GLS99] study random bipartite
graphs in which the numbers of black and white vertices are equal (in our notation,
m = n). They consider an n⇥n chessboard in which a rook is placed on each square with
independent probability p(n). There is a natural bijection between this random chessboard
and a random graph in Gp(n, n), where a rook in row j column k corresponds to an edge
between vertices uj and vk. The degree of uj (resp. vk) then corresponds to the number
of rooks in row j (resp. column k). Note any rooks in the same column or same row can
be considered mutually threatening. Godbole et. al. define the random variable Yr to be
the number of sets of r mutually threatening rooks. We observe that this corresponds to
the number of vertices with degree h � r, weighted by

�

h
r

�

. Let ⇣r be the random variable
which returns the number of vertices (either black or white ) of degree r. Then Yr can be
written,

Yr = ⇣r + (r + 1)⇣r+1

+
�

r+2

r

�

⇣r+2

+ . . .
�

n
r

�

⇣n. (2.4)

We translate Theorem 2.1 of [GLS99] into our own notation.
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2.2. Bipartite random graphs

Theorem 2.1 (Godbole et. al. [GLS99]). Let Gp = Gp(m, n) be as in Definition 1.6.
Suppose also that m = n. Then as n!1,

P
Gp

�

Yr = 0
�

=

8

<

:

1 for p = o
⇣

1

n1+1
r

⌘

0 for p�1 = o(n1+

1

r )
(2.5)

There is an alternate way to generate a random chessboard; place M rooks onto the
board such that all

�

n2

M

�

possible arrangements are equally likely. This corresponds to the
bipartite model GM(m, n) for m = n. Godbole et. al. prove a result in this model (i.e.
BM) similar to Theorem 2.2.

The paper also gives the following result on the limit of the distribution of Yr.

Theorem 2.2 (Godbole et. al. [GLS99]). Let Gp = Gp(m, n) be as in Definition 1.7
where p = o(n�1). Suppose also that m = n. Then as n!1,

P
Gp

�

Yr = k
�

=
e�cck

k!
where c = 2n

�

n
r

�

pr (2.6)

Number of vertices with fixed degree r. So the distribution of ⇣r converges to
the Poisson distribution when the expectation of ⇣r is finite and converges to the normal
distribution when the expectation of ⇣ converges to infinity, as o(m"). This has some
interesting corollaries. The parameters in the probability distributions of ⇣r can be calcu-
lated explicitly for particular values of p. This is done by Palka [Pal84] in the following
corollaries. (We write X ⇠ N(0, 1) to denote that the distribution of the random variable
X converges to the normal distribution with expectation 0 and variance 1, see [Pal84] for
precise definition.)

Corollary 2.3. Fix 0 < � <1. Let Gp = Gp(m, n) be as in Definition 1.6. Suppose also
that m = ↵n.

1. Let r � 2. Suppose np = �m�1/r. Then as m!1, ⇣r ⇠ P (�).

i.e. P
Gp(⇣r = c) =

�ce��

c!
where � =

1

r!
�r(1� ↵1�r)

2. Let r � 0. Suppose np = ln m� � ln ln m + o(ln ln m). Then as m!1,

(⇣r � a)p
a

⇠ N(0, 1) where a =

8

<

:

2

r!
(ln m)r+� if ↵ = 1

1

r!
(ln m)r+� if 0 < ↵ < 1
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3. Let r � 1 and 0 < y < 1. Suppose np = ln m � (1 � �)r ln ln m + o(ln ln m). Then
as m!1,

(⇣r � a)p
a

⇠ N(0, 1) where a =

8

<

:

2

r!
(ln m)r� if ↵ = 1

1

r!
(ln m)r� if 0 < ↵ < 1

4. Let r � 0 and �1 < � < 1. Suppose np = ln m � r ln ln m + � + o(1). Then as
m!1,

⇣r ⇠ P (�) where � =

8

<

:

2e��

r!
if ↵ = 1

e��

r!
if 0 < ↵ < 1

5. Let r � 0. Suppose np = ln m� r ln ln m + f(m), where f(m) = o(ln ln m) tends to
1. Then as m!1,

P
Gp

�

⇣r = 0
�

! 1

Let ⇠r (resp. ⌘r) be the number of white (resp. black) vertices of degree r. The final
result in [Pal84] concerns ⇠r and ⌘r for the case m = n, i.e. when the number of white
vertices is equal to the number of black vertices. This result, shown in Theorem 2.4, gives
the asymptotic distribution of ⇠r and ⌘r individually (rather than for the random variable
⇣r = ⇠r + ⌘r).

Theorem 2.4. Let Gp = Gp(m, n) be as in Definition 1.6. Suppose also that m = n.
Then,

lim
m!1

P
Gp

�

⇠r = i, ⌘r = j
�

=
µi+j

i!j!
e�2µ where µ = e��/r!

The limiting distribution of ⇠r and ⌘r is the bi-variate Poisson distribution with parameter
µ [Pal84].

In a bipartite graph on (m, n) vertices the relative sizes of m and n are important. Palka,
in [Pal87] shows that in Gp(m, n) that when the number of white vertices is su�ciently
large in comparison to the number of black vertices then the vertex of maximum degree
is almost surely a black vertex. Indeed for suitable p and suitable ratio of m greater then
n, Palka shows for fixed i that almost surely the smallest i degrees will all be on white
vertices. Similar results are shown by Rucinski for k-partite2graphs in [Ruc81].

In a bipartite graph the number of edges incident with each colour class of vertices is the
same so the colour with fewer vertices will have a higher average degree, and so it makes
sense that it is also more likely to host the vertex of maximum degree.

2A k-partite graph is one in which the vertices are partitioned into k sets, V1, . . . , Vk and the edge set
E is a subset of {(va, vb) : va 2 Vi, vb 2 Vb for i 6= j}.
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2.2. Bipartite random graphs

2.2.2 Enumeration results

We are interested in results that give counts for the number of bipartite graphs with a
given degree sequence. Much of the early enumeration work was done in the context of
binary matrices with given row and column sums. Ryser [Rys63] found the necessary and
su�cient conditions on the row and column sums that guarantee the existence of a binary
matrix with such sums. A closed form solution for the precise number of bipartite graphs
with given degree sequence is unknown but asymptotic results are given by [Bar10] and
others. We shall use the result in [GM09].

McKay and Greenhill derived a formula for finding the number of bipartite graphs for some
given degree sequences Theorem 2.1 of [GM09, p.4 ]. This result forms the foundation of
the thesis. Before stating the theorem we define (", a)-regular degree sequences.

Definition 2.5 (acceptable for a, m and n).
Let

fm,n(x) :=
(1� 2x)2

4x(1� x)

 

1 +
5m

6n
+

5n

6m

!

.

If fm,n(x) < a ln n then x is acceptable for a, m and n.

Conditions 2.6. These conditions apply to an m-tuple s = s(m) = (s
1

, ..., sm) and an
n-tuple t = t(n) = (t

1

, ..., tn). The conditions depend on the parameters a and ".

For m, n!1,

• sj � s and tk � t are uniformly O(n1/2+") for 1  j  m and 1  k  n.

•
P

sj =
P

tk and � = 1

mn

P

j sj = 1

mn

P

k tk is acceptable for a, m and n.

Definition 2.7 ((", a)-regular). If m, n and (s, t) satisfy Conditions 2.6 then we say that
(s, t) is (", a)-regular.

We now state the enumeration result by Greenhill and McKay (stated as Theorem 2.1
in [GM09, p.4]). To maintain consistency with the notation of [GM09] we denote the
number of graphs with degree sequence (s, t) by |B(s, t)|.

Theorem 2.8 (Greenhill and McKay). Let a, b 2 R+ such that a + b < 1

2

. Then there
exists " = "

0

(a, b) > 0 such that the following holds.
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If (s, t) is (", a)-regular then as m, n!1,

|B(s, t)| =
✓

mn

�mn

◆

�1

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

⇥ exp

 

� 1

2

⇣

1�
P

j(sj � s)2

�(1� �)mn

⌘⇣

1�
P

k(tk � t)2

�(1� �)mn

⌘

+ O(n�b)

!

.

(2.7)

Greenhill and McKay also note that the error term O(n�b) is uniform. This will be im-
portant in Section 7.3.

Note that if a degree sequence (s, t), satisfies
⇣

1�
P

j(sj�s)2

�(1��)mn

⌘⇣

1�
P

k(tk�t)2

�(1��)mn

⌘

= O(n�b),

then the enumeration in (2.7) simplifies. This motivates the following definition.

Definition 2.9 ((a, b,m, n, ")-pathological). A degree sequence is called non-(a, b,m, n, ")-

pathological if it is both (", a)-regular and
⇣

1�
P

j(sj�s)2

�(1��)mn

⌘⇣

1�
P

k(tk�t)2

�(1��)mn

⌘

= O(n�b).

Corollary 2.10. Let a, b > 0 be constants such that a + b < 1

2

. Then there exists
" = "

0

(a, b) > 0 such that the following holds.

If (s, t) is not (a, b,m, n, ")-pathological then as m, n!1,

|B(s, t)| =
✓

mn

�mn

◆

�1

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

�

1 + O(n�b)
�

. (2.8)

Hence, for any non-pathological degree sequence we now have the simple enumeration
formula in Corollary 2.10. We prove in this thesis that in each of our random graph models
(under suitable parameters) almost all graphs have non-pathological degree sequences.
In particular we show this for models Gp, GM and G

t

in Theorems 4.9, 5.2 and 6.20
respectively.
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Chapter 3

Probabilistic bounds and techniques

In this thesis at many points it will be necessary to show that a random variable is very
likely to take a value close to its mean. To enable us to achieve this we make use of some
concentration inequalities from probability theory. They are so-called because under suit-
able conditions they can show that a random variable is likely to be concentrated about
its mean.

We will often show that the sum of a large number of random variables is very likely
to fall close to the mean of the sum of those random variables. We will deal with two
cases. Most random variables we deal with will be independent. This allows us to use the
concentration results by Hoe↵ding and McDiarmid (Theorems 3.1 and 3.2 respectively).

In the graph half -model, G
t

, however, we will need to be able to manipulate random vari-
ables which are not independent. For this situation we construct a martingale (weaker
then independence) which allows us to use a generalised Azuma theorem (Theorem 3.8)
to gain the necessary concentration results.

Our method to construct this martingale follows the famous technique known as Doob’s
martingale process. The theory for this technique forms Section 3.2.4 where we also run
through the iconic proof by Shamir and Spencer in [SS87]. This proof shows the chromatic
number in a general random graph is highly concentrated. It is a good, clean example of
the Doob process invaluable to understand our application of it to the graph half -model
which has some added complications.
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Chapter 3. Probabilistic bounds and techniques

3.1 Concentration inequalities for independent ran-
dom variables

We use some general theorems from probability theory, which give ways to compute the
likelihood that variables lie very close to their expectations. These Theorems were listed in
the survey by Chung and Lu [pp.84-86][CL06]. The first of these concentration equalities
is due to Cherno↵ and appears in his paper [Che81]. The second is done by McDiarmid
in his paper [McD98].

Theorem 3.1 (Cherno↵ 1981). Let X
1

, . . . , Xn be independent random variables such
that P(Xi = 1) = pi and P(Xi = 0) = 1 � pi. Define X =

Pn
i=1

Xi. This implies the
following bounds,

P(X  E(X)� k)  e�k2/2E(X)

P(X � E(X) + k)  e
�k2

2(E(X)+k/3) .

And hence for positive k,

P(|X � E(X)| � k)  e�k2/2E(X) + e
�k2

2(E(X)+k/3) < 2e
�k2

2(E(X)+k/3) .

In most applications, pi = p for all i, in which case E(X) = np.
The following Theorem is used to prove Lemma 4.4. It is quite powerful in this context
because in Lemma 4.4 we have strong bounds on the di↵erence between each random
variable and it’s expectation.

Theorem 3.2 (McDiarmid 1998). Let X
1

, . . . , Xn be independent random variables sat-
isfying |Xi � E(Xi)|  ci for 1  i  n. Define X =

Pn
i=1

Xi. Then,

P(|X � E(X)| � k)  e
�k2

2
Pn

i=1 c2i .

3.2 Martingales

3.2.1 Preliminaries

Definition 3.1 (�-algebra). A set F is a �-algebra if it satisfies the following conditions,

• F 6= ?

• A 2 F ) Ac 2 F
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• A
1

, A
2

, . . . 2 F ) [1i=1

Ai 2 F

Suppose we have a set P = {Yi}i2I which partitions ⌦, then there is a natural �-algebra
on ⌦ corresponding the partition P . The following construction is from [CMZ09].

Definition 3.2 (�-field induced by partition Pi). Let Fi be the collection of all sets which
may be defined as unions of blocks in the partition Pi. Then we say Fi the �-field induced
by the partition Pi.

Cooper et. al. [CMZ09] also note that for a set of partitions {Pi}0in where each Pi+1

is
a refinement Pi, the set of �-algebras {Fi}0in induced by the partitions {Pi}0in form
a filter.

A martingale is defined with respect to the filter as follows [CMZ09].

Definition 3.3 (martingale with respect to filter). Let (⌦,F , P) be a probability space
with a filter {Fi}0in. Suppose that X

0

, . . . , Xn are random variables such that for each
0  i  n, Xi is Fi measurable. The sequence X

0

, . . . , Xn is a martingale provided that

E
�

Xi+1

| Fi

�

= Xi

for each 0  i < n.

Conditional expectation The expectation of a random variable X conditional on a
�-algebra can be quite generally. However, we define only the special case which we will
require, when the �-algebra is induced by a partition and ⌦ is a finite set. Note that in
the probability space (⌦, ⌃, P) where |⌦| < 1 that any random variable Y : ⌃ ! R can
be defined by giving its value at each ! 2 ⌦.

Definition 3.4 (Conditional expectation, E
�

X | F
�

). This is defined only for the special
case that the �-algebra F is induced by some partition {Yi}i2I of ⌦. We also assume that
⌦ is finite.

Let ! 2 ⌦. Now, because {Yi}i2I is a partition, 9! j 2 I such that ! 2 Yj. Then,

E
�

X | Fi

�

(!) :=

P

!02Yj
X(!0)P(!0)

P(Yj)
.
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We observe the following two special cases. Let F
0

= {?, ⌦}. Then F
0

is induced by the
trivial partition {⌦}, and,

E
�

X | F
0

�

(!) =

P

!02⌦

X(!0)P(!0)

P(⌦)
= E(X). (3.1)

Now suppose, conversely, that we have the finest possible partition, P = {{!} : ! 2 ⌦}.
Let F⇤ be the �-algebra induced by P , then,

E
�

X | F⇤

�

(!) =

P

!02{!} X(!0)P(!0)

P(!)
= X(!). (3.2)

The following lemma, which we use to construct martingales, is a special case of the tower
of expectation property. For statement and proof of the more general case refer to [Wil91,
p.88].

Lemma 3.5. Let {Yi}i2I and {Zj}j2J both be partitions of ⌦ with finite index sets I and
J . Suppose further that for each i 2 I, 9!Ji ⇢ J such that {Zj}j2Ji is a partition of Yi.
Let Fk and Fk+1

be the �-algebras induced by partitions {Yi}i2I and {Zj}j2Ji respectively,
according to Definition 3.2. Then,

E
⇣

E
�

X | Fk+1

| Fk

⌘

= E
�

X | Fk

�

.

3.2.2 Azuma-Hoe↵ding inequality

This theorem is often referred to as Azuma’s inequality as it appeared in Azuma’s 1967
paper [Azu67], but it also appeared earlier in Hoe↵ding’s 1963 paper [Hoe63].

Theorem 3.6 (Azuma-Hoe↵ding). Suppose X
0

, . . . , Xn form a martingale such that |Xk�
Xk�1

|  ck for each 1  k  n. Then,

P
�

|Xn �X
0

| � r
�

 e
�r2

2
Pn

k=1
c2
k .

There is also a strengthened version of Theorem 3.6 proven by McDiarmid in [McD89].
He showed that the expression in the exponent could improved by a factor of 4. (That is,
the right hand side becomes exp

�

�2r2/
Pt

k=1

c2

k

�

for the same initial conditions.)

3.2.3 Generalised Azuma-Hoe↵ding inequality

We also define a more general version of the Azuma-Hoe↵ding inequality, it applies even
when the bound |Xk � Xk�1

|  ck does not hold on the entire space. A similar result
appears in [Vu02, p.9] as Lemma 3.1. It also appears as Proposition 3 in [HHV09] who
give a proof that it follows from Theorem 3.6.
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Definition 3.7 (near-c-Lipschitz with exceptional probability ⌘). A martingale is near-
c-Lipschitz with exceptional probability ⌘ if,

P(|Xi �Xi�1

| � c)  ⌘.

Theorem 3.8 (Azuma-Hoe↵ding). Suppose X
0

, . . . , Xn forms a martingale which is near-
c-Lipschitz with exceptional probability ⌘. Then,

P
�

|Xn �X
0

| � r
�

 e
�r2

2nc2 + ⌘.

We will use Theorem 3.8 in Lemma 6.18 as part of our proof that pathological degree
sequences are rare in the graph half -model, G

t

.

3.2.4 Doob’s martingale process

The method we will describe is often referred to as Doob’s martingale process and is often
used to show that the value of a random variable is concentrated about its mean.

Suppose we want to bound the di↵erence between the expected value of a function f
over the whole domain (C, say) and the value of the function on a specific point in the
domain (c 2 C). We set X

0

= E[f(c)] and for a fixed n, Xn = E[f(x)|x 2 C]. The
method then proceeds to define a series of random variables Xi for 0  i  n such that
Xi = E[f(x)|x 2 Ci], where c = C

0

⇢ . . . ⇢ Ci ⇢ Ci+1

⇢ . . . ⇢ Cn = C. We are in e↵ect,
zooming in on the value of f at c as we take the expected value of f over smaller and
smaller subsets of C. The Xi’s then form a martingale and concentration results such as
Azuma’s inequality can be used to bound |X

0

�Xn|.

Steps in Doob’s martingale process on the probability space (⌦, ⌃, P),

• create a filter F
0

✓ F
1

✓ . . . ✓ Fn (often via partitions of ⌦.)

• define Xi = E(X | Fi)

• prove the Xi’s form a martingale with respect to the filter (via tower property).

• bound the magnitude of successive di↵erences |Xi �Xi�1

| for each 1  i  n.

• apply Azuma-Hoe↵ding Theorem 3.6

Shamir and Spencer used Doob’s martingale process to show that the chromatic number
of a random graph is very concentrated in [SS87]. This is a pertinent example for two
reasons. Firstly, it was one of the first major results which used probabilistic techniques
in combinatorics and piqued interest in the area. Secondly it is an example of a more
general (widely used) technique called Doob’s martingale process. Later in of this thesis

29



Chapter 3. Probabilistic bounds and techniques

we will use this technique to show Lemma 6.17. This will form part of our proof that
pathological degree sequences are rare in the bipartite graph half -model, G

t

.

We work in the probability space Ĝp and begin by defining a filter {Fi}0in�1

on this
space. This filter is defined via the partition induced by the following equivalence classes.

i-equivalence of graphs Two graphs are i-equivalent, denoted H ⌘i G if the following
condition holds.

For all 1  x  i and all 1  y  n the edge {x, y} 2 H , {x, y} 2 G.

That is, we require all edges which emanate from one of the first i vertices to be the same
in both graphs. We illustrate this definition with an example in 3.1.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

G =

G ⌘
0

G ⌘
1

G ⌘
2

G ⌘
3

Figure 3.1: The sets of graphs i equivalent to G for 0  i  3. The dashed lines indicate
that edges that can be either absent or present in the graphs in that equivalence class.

For each 0  i  n � 1 the equivalence relation defines a partition Pi. Observe that the
partition Pi+1

is a refinement of Pi. For 0  i  n� 1 let Fi be the �-algebra induced by
Pi according to Definition 3.2.

Vertex uncovering martingale Given a random graph G 2 Ĝp(n), we define a se-
quence of random variables X

0

, . . . , Xn�1

such that X
0

(G) = E
ˆ

Gp
[�] and Xn�1

(G) = �(G).
We define,

Xi(G) := E
ˆ

Gp

�

�|Fi

�

(G) = E
ˆ

Gp

�

�(H)|H ⌘i G
�

.

The first equality is our definition of Xi and the second follows by Definition 1.3 of con-
ditional probability.

When i = 0, Xi the expectation of the chromatic number over all random graphs in Ĝp(n).
But when i = n� 1, the (n� 1)-equivalence of two graphs requires them to be the same,
i.e. G is the only graph (n� 1)-equivalent to G. Hence Xn�1

= �(G).
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3.2. Martingales

Claim The Xi’s form a martingale.

Proof. This is equivalent to proving the equality E
ˆ

Gp

⇣

E
�

Xi+1

| Fi+1

�

| Fi

⌘

= E
ˆ

Gp

�

Xi+1

| Fi

�

.

But this is precisely the Tower Property of Expectation (see Lemma 3.5) and thus the
random variables Xi, form a martingale.

Hence we can apply Azuma’s lemma but first we need to bound |Xi+1

�Xi|.

Claim |Xi+1

�Xi|  1.

Proof. We compare Xi+1

and Xi. Xi is the expected number of colours needed knowing
the edges of the first i vertices. The random variable Xi+1

is the expected number of
colours needed knowing both edges of the first i vertices and also the edges which join to
the (i + 1)th vertex. This only a↵ects which colours are possible at the (i + 1)th vertex.
Hence the expected value of colours can change by at most one. So we have |Xi+1

�Xi|  1
as claimed.

Concentration of Chromatic Number Result By the Azuma-Hoe↵ding Theorem
3.6, and because |Xi+1

�Xi|  1 for each 0  i  n� 2, we have,

P
ˆ

Gp

�

|Xn�1

�X
0

| � �
�

 e
��2

2(n�1) .

Hence there is high probability that the chromatic number of G is close to the average
chromatic number over all random graphs in Ĝp(n). For example, fix " > 0, then,

P
ˆ

Gp

�

|Xn�1

�X
0

| � n1/2+"
�

 e
�n1�2"

(n�1)  e�n2"
.

Thus the chromatic number of a random graph G in Ĝp is almost surely within n1/2+" of
the expected chromatic number as n!1.

Shamir and Spencer show more than this. In [SS87] they prove that for s = 3, a random
graph G in Ĝp (and for suitable p) there exists a function u(n) such that,

limn!1P
ˆ

Gp

�

u  �(G)  u + s) = 1. (3.3)

This was further strengthened by  Luczak in [ Luc91] who proved (3.3) for the case s = 1.
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Chapter 3. Probabilistic bounds and techniques

3.3 Probability generating functions

Probability generating functions will be a useful tool at a couple of points within this
thesis. Proofs of the statements can be found in [Wil06]. Suppose we have random
variables X, Y defined on some probability space (⌦, ⌃, P), for ⌦ ✓ N . Then we say that
the power series P (x) is a probability generating function for the random variable X if it
satisfies (3.4).

P (x) = p
0

+ p
1

x + p
2

x2 . . . where pi = P(X = i) (3.4)

The expectation of X, E(X) may now be calculated in terms of P (x).

E[X] = 0.p
0

+ 1.p
1

+ 2.p
2

+ 3.p
3

+ . . .

= (1.p
1

+ 2.p
2

x + 3.p
3

x2 + . . .)x=1

=
� d

dx
P (x)

�

x=1

.

This is sometimes useful when calculating the expectation of discrete random variables.
Similarly,

E[X2] = 0.p
0

+ 1.p
1

+ 22.p
2

+ 32.p
3

+ . . .

=
d

dx
x(1.p

1

+ 2.p
2

x + 3.p
3

x2 + . . .)x=1

=
� d

dx
x

d

dx
P (x)

�

x=1

.

Let Q(x) be then probability generating function for Y . Then if X and Y are independent
random variables,

E[XY ] =
⇣

�

x
d

dx

�

P (x)
⌘⇣

�

x
d

dx

�

Q(x)
⌘

x=1

.
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Part II

New results:
Degree sequences in random

bipartite graphs
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The main goal of this thesis is to show that in each of the random graph models the prob-
ability of a non-pathological degree sequence (s, t) can be asymptotically approximated
by the probability of an (m + n)-tuple in a specially constructed binomial model.

In this part we will find an asymptotic probability for non-pathological degree sequences
in each of the random graph models. The starting point for this is Greenhill and McKay’s
Theorem, our Theorem 2.8, which gives a count for the number of graphs with degree
sequence (s, t). From this counting result we will derive the probability of a given degree
sequence in each of our random graph models.

Theorem 2.8 does not hold for all degree sequences, only (", a)-regular degree sequences.
Hence our first result, for each random graph model, is to show that these (", a)-regular
degree sequences account for the bulk of the probability space.

Our second result concerns a further restriction on (", a)-regular degree sequence. Observe
that if an (", a)-regular degree sequence satisfies

 

1�
P

j(sj � s)2

�(1� �)mn

! 

1�
P

k(tk � t)2

�(1� �)mn

!

= O(n�b) (3.5)

then the function on the degrees in the exponential term of (2.7) disappears into the
error term, O(n�b). This is what we desire. For these well-behaved degree sequences
(s, t), which we have called non-pathological, we have the simplified enumeration result,
Corollary 2.10. So, our second result for each of our random graph models is that the
probability of a degree sequence being pathological is asymptotically very low.

This part is organised as follows.

We begin by analysing the graph p-model, Gp, in Chapter 4. In Section 4.1, we show that
degree sequences are likely to be (", a)-regular in this probability space. Then in Section
4.2 we show that most degree sequences are non-pathological.

Both these steps are then repeated for the graph edge-model, GM in Chapter 5. This is
done by considering the graph edge-model as a conditional case of the graph p-model.

Lastly we show the same two results hold in the graph half -model, G
t

. In this model we
shall see that the degrees of the white vertices are not independent as they were for the
graph p-model, Gp. Hence this case requires some more e↵ort and we work with mar-
tingale concentration inequalities rather than the stronger concentration inequalities for
independent random variables.
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Chapter 4

Graph p-model, Gp.

We work with our model of random graphs Gp where each edge of the complete bipartite
graph Km,n is chosen independently with probability p = p(m, n). See Definition 1.6.
In this model we will refer often to the following conditions.

Conditions 4.1. These conditions apply to an m-tuple s = s(m, n) = (s
1

, ..., sm) and an
n-tuple t = t(m, n) = (t

1

, ..., tn). The conditions depend on the parameters a and ".

For m, n!1,

• p is acceptable for a, m and n.

• m = o(n1+") and n = o(m1+").

4.1 (", a)-regular degree sequences in Gp

4.1.1 Variation in the degree of each vertex.

In this section we show that a graph, G, chosen at random in Gp has degree sequence
(s, t), likely to satisfy the following for appropriate " > 0.

For each 1  j  m and 1  k  n, sj � s and tk � t are O(n1/2+").

Lemma 4.1. Fix 0 < a < 1

2

and " > 0. Let Gp = Gp(m, n) be as in Definition 1.6.

1. Let S be the random variable that returns the average degree of the white vertices
u

1

, . . . , um. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

|S � np| � n3"
�

 e�n2"
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Chapter 4. Graph p-model, Gp.

2. For 1  j  m, let Sj be the random variable that returns the degree of the white
vertex uj. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

|Sj � np| � n1/2+"/3

�

 e�n3"/2

Proof. (of 1.) We firstly observe that

|mS �mnp|  n1+2"  n3"m (4.1)

implies that
|S � np|  n3".

We prove (4.1) using Cherno↵’s inequality (Theorem 3.1).

Construct the random variable Xj,k by setting Xj,k = 1 if there is an edge between uj and
vk in our random graph G and otherwise setting Xj,k = 0.

Then mS =
P

j,k Xj,k = X, and E
Gp

�

mS
�

= E
Gp

�

X
�

= mnp. By Lemma 4.5, p > 1

ln n

and so mnp < mn1+". Set k = n1+2", then by Cherno↵’s inequality (Theorem 3.1),

P
Gp

�

|mS �mnp| � n1+2"
�

 2e
�n2+4"

2(n2+"+n1+2"/3)  e�n2"

hence,
P
Gp

�

|S � np| � n3"
�

 e�n2"

Proof. (of 2.) We again use Cherno↵’s inequality (Theorem 3.1), this time to bound the
probability that Sj is concentrated about its expected value, np.

We use the random variables Xj,k defined above. The number of edges incident with uj

is Sj =
Pn

k=1

Xj,k and E
Gp(Sj) = np. We can now apply Cherno↵’s inequality (Theo-

rem 3.1), letting k = n1/2+"/3. Then for large enough n

P
Gp

�

Sj  np� n1/2+"/3

�

 e�n1+2"/2np = e�n2"/2p  1

2

e�n3"/2
(4.2)

and

P
Gp

�

Sj � np + n1/2+"/3

�

 e
�n1+2"

2(np+n1/2+"/3)  1

2

e�n3"/2
, (4.3)

where the last steps on lines (4.2) and (4.3) use p < 1. Hence,

P
Gp

�

|Sj � np| � n1/2+"/3

�

 e�n3"/2
.
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4.1. (", a)-regular degree sequences in Gp

Corollary 4.2. Fix 0 < a < 1

2

. Let Gp = Gp(m, n) be as in Definition 1.6 and let � be the
random variable which returns the edge density. Then as m, n!1 subject to Conditions
4.1,

P
Gp

�

|�� p| � n�1+3"
�

 e�n2"

Proof. Simply note that n�1|S�np| = |��p| so this is actually is an equivalent statement
to Lemma 4.1a.

Lemma 4.3. Fix 0 < a < 1

2

. Let Gp = Gp(m, n) be as in Definition 1.6.

1. Fix any white vertex uj. Let Sj be the random variable that returns the degree of
uj. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

|Sj � S| � n1/2+2"/5

�

 e�n4"/3

2. Fix any black vertex vk. Let Tk be the random variable that returns the degree of
vk. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

|Tk � T | � n1/2+10"/11

�

 e�n5"/4

Proof. (of 1.)
Let us fix 1  j  m and consider Sj. We have the following bounds on |Sj � np| and
|s� np| by parts a and b of Lemma 4.1 respectively.

P
Gp

�

|S � np| � n1/2+"/3

�

 e�n3"/2

P
Gp

�

|Sj � np| � n1/2+"/3

�

 e�n3"/2

Hence by the triangle inequality we conclude that for large enough n,

P
Gp

�

|Sj � S| � n1/2+2"/5

�

 e�n4"/3
,

as required.

Proof. (of 2.) The symmetry of our bipartite graph allows us to swap the black ver-
tices of our random graph for the white vertices. Hence by symmetry, any true state-
ment on the variables m, n, uj, Sj, S implies the corresponding statement on the variables
m, n, vk, Tk, T .

Therefore our bounds on |Sj � S| in Lemma 4.1 (1) imply by symmetry,

P
Gp

�

|Tk � T | � m1/2+10"/11

�

 e�m4"/3
. (4.4)
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Chapter 4. Graph p-model, Gp.

As we know that m = o(n1+") and n = o(m1+") the bound above translates into a bound
in terms of n. In the working below c, c0 are arbitrary constants in R.

m1/2+2"/5  (cn1+")1/2+2"/5 = c0n1/2+2"/5+"/2+2"2/5  n1/2+10"/11

e�m4"/3  e�(cn
1

1+"
)

4"/3
= e�n4"(1�"+"2�"3...)/3c4"/3  e�n5"/4

Hence (4.4) implies:

P
Gp

�

|Tk � T | � n1/2+10"/11

�

 e�n5"/4
.

We have our result.

The last lemma showed that the degree of a particular vertex on either side is unlikely to
vary too greatly from the average of the degrees on that side. This is an important step
in showing that a degree sequence (s, t) for a random graph in the graph p-model, Gp is
highly likely to be (", a)-regular.

Lemma 4.4. Fix 0 < a < 1

2

and " > 0. Let Gp = Gp(m, n) be as in Definition 1.6.
Let S

1

, . . . , Sm and T
1

, . . . , Tn be the random variables that return the degrees of the white
vertices u

1

, . . . , um and the black vertices v
1

, . . . , vn respectively.

Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

8j, k, Tk � T, Sj � S uniformly o(n1/2+")
�

� 1� e�n6"/5
.

Proof. By Lemma 4.3, parts (1) and (2) we have the following results:

P
Gp

�

|Sj � S| � n1/2+2"/5

�

 e�n4"/3
,

P
Gp

�

|Tk � T | � n1/2+10"/11

�

 e�n5"/4
.

Hence,

P
Gp

�

8j, |Sj � S| < n1/2+2"/5 and 8k, |Tk � T | < n1/2+10"/11

�

� 1�me�n4"/3 � ne�n5"/4

� 1� e�n6"/5
.

4.1.2 Edge density in Gp

Recall the term edge density, denoted � and defined by � = 1

mn

P

j sj, i.e. the number of
edges divided by total number of possible edges in the complete bipartite graph. There
is a condition on � in Definition 2.7 of an (", a)-regular degree sequence. We show that
this condition is likely to hold in Gp for suitable values of p. In particular, we show that
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4.1. (", a)-regular degree sequences in Gp

when p is acceptable for a, m and n it is highly likely that � is acceptable for a+", m and n.

First we prove two technical lemmas. The results are a property of the relationship
between p and � where p is a parameter of Gp and the random variable, �, returns the
edge density of a random graph in Gp.
We prove a lemma showing the bounds placed on r(1 � r) by the assumption that r is
acceptable for a, m and n.

Lemma 4.5. Let n and m be positive integers. Suppose there exists some 0 < a < 1

2

,
such that r is acceptable for a, m and n.

Then for n > e16,
1

ln n
< r(1� r)

Proof. By the definition of acceptable for a, m and n we know r satisfies:

(1� 2r)2

4r(1� r)

⇣

1 +
5m

6n
+

5n

6m

⌘

 a ln n

We observe,

(1� 2r)2

4r(1� r)
=

1

4r(1� r)
� 1 and 1 +

5m

6n
+

5n

6m
� 8

3
.

Hence,

r(1� r) >
4

16 + 3 ln n

>
1

ln n
for n > e16

as required.

Lemma 4.6. Fix " > 0. Let Gp = Gp(m, n) be as in Definition 1.6. Then as m, n ! 1
subject to Conditions 4.1,

P
Gp

⇣ p(1� p)

�(1� �)
= 1 + O(n�1+4")

⌘

� 1� e�n2"
.

Proof. We begin by noting the following rearrangement,

p(1� p)

�(1� �)
= 1� (p� �)

⇣�� (1� p)

p(1� p)

⌘

�1

. (4.5)
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Chapter 4. Graph p-model, Gp.

By Lemma 4.5, because p is acceptable for a, m and n:

p(1� p) > 1

ln n
. (4.6)

Also note that |� + p� 1| < 1. Thus by (4.6),

�

�

�

�� (1� p)

p(1� p)

�

�

�

< ln n. (4.7)

The expected value in the graph p-model, Gp of the edge-density, �, is p. So, when � is
equal to its expectation, (4.5) is precisely 1. An earlier result, corollary 4.2 provides the
following bound:

P
Gp

�

|�� p| � n�1+3"
�

 e�n2"
.

Hence by (4.5), (4.7) and noting that ln n < n" for large enough n, we have the result.

We are now in a position to prove our result on acceptable degree sequences.

Lemma 4.7. Fix " > 0 and 0 < a < 1

2

. Let Gp = Gp(m, n) be as in Definition 1.6. Then
as m, n!1 subject to Conditions 4.1,

P
Gp

⇣

� is acceptable for a + ", m and n
⌘

� 1� e�n3"/2
.

Proof. For convenience we let c =
⇣

1 + 5m
6n

+ 5n
6m

⌘

�1

. Note that c > n�". The condition

that p is acceptable for a, m and n can now be written

1

4pq
< 1 + ac ln n. (4.8)

By Lemma 4.6,

P
Gp

⇣ p(1� p)

�(1� �)
= 1 + O(n�1+4")

⌘

� 1� e�n2"
.

We work now in the graph p-model, Gp; with probability greater than 1 � e�n3"/2
the

following holds.
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4.1. (", a)-regular degree sequences in Gp

1

4�(1� �)
=

1

4pq

�

1 + O(n�1+4")
�

(4.9)

 1

4pq
+ O(n�1+4" ln n) (4.10)

< 1 + ac ln n + O(n�1+4" ln n) (4.11)

< 1 +
⇣

a + O
⇣n�1+4" ln n

c ln n

⌘⌘

c ln n (4.12)

< 1 +
⇣

a + O
�

n�1+5"
�

⌘

c ln n (4.13)

< 1 +
�

a + "
�

c ln n (4.14)

We justify the steps line by line. Line (4.9) holds with probability at least 1 � e�n2"
by

Lemma 4.6. Note this is the one step that holds only probabilistically. By Lemma 4.5
because p is acceptable for a, m and n, we know that 1

pq
> ln n. This implies (4.10).

Line (4.11) now follows by (4.8). Then (4.12) is a rearrangement of (4.11). Note that
c > n�" because of our conditions on m and n. Thus we have (4.13). We are considering
n tending to infinity so " is larger than O(n�1/2+3"/2). Hence (4.14), which is exactly as
we require.

4.1.3 Bounding result on (", a)-regular degree sequences

When our parameter p is acceptable for a, m and n there is a high probability that a graph
chosen randomly in Gp will have an (", a)-regular degree sequence. We state and prove
this formally in the following lemma.

Lemma 4.8. Fix 0 < a < 1

2

and " > 0 such that a0 = a + " < 1

2

. Let Gp = Gp(m, n) be as
in Definition 1.6. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

(S, T ) is (", a)-regular
�

� 1� e�n7"/6

Proof. By Lemmas 4.4 and 4.7. Note that e�n7"/6
< e�n3"/2

+ e�n6"/5
for large enough n.

The result now follows.

Recall that this is important as it is only graphs with (", a)-regular degree sequences
(s, t) which satisfy Greenhill and McKay’s enumeration result, Theorem 2.8. Hence
Lemma 4.8 shows that for a degree sequence (s, t), generated at random in the p-model,
Gp, there is a high probability that we can apply Theorem 2.8.

In the next section we will show that in the graph p-model, Gp, with a high probability,
a random graph will have a degree sequence (s, t) that is non-pathological.
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Chapter 4. Graph p-model, Gp.

4.2 Pathological degree sequences in Gp.

We show that in the graph p-model, Gp, the probability of selecting a graph whose degree
sequence is pathological is very small. This is done in Theorem 4.9 at the end of this sec-
tion. Recall that a degree sequence is pathological if it is either not (", a)-regular or is such
that the expression (3.5) is too large. Earlier in Section 4.1, we found that the first of these
possibilities was unlikely, i.e. we showed that the probability of a degree sequence not
being (", a)-regular was small. In this section we concentrate on the other property that
leads to (a, b,m, n, ")-pathological degree sequences. Thus, we analyse the left hand side of
(3.5). In particular, we want to bound the probability in the graph p-model, Gp, that the
left hand side of (3.5) exceeds O(n�b). We briefly outline the steps we take to achieve this.

By symmetry we will see it is su�cient to show that 1 �
P

j(Sj�S)

2

�(1��)mn
is O(n�b) with high

probability in Gp. This we do in two steps, we show that both of the following hold with
high probability in Gp.

P

j(Sj � S)2 � pqmn

�(1� �)mn
= O(n�b) (4.15)

pq

�(1� �)
=

pqmn

�(1� �)mn
= 1 + O(n�b) (4.16)

Proving (4.15) comprises the entirety of Sections 4.2.1 and 4.2.2. It is a concentration
result, we show that the function on the white degrees

P

j(Sj � S)2 is likely to be close
to pqmn. In Section 4.2.1 we define a new random variable, S⇤j , e↵ectively allowing us to
work only with degree sequences whose white degrees are close to their mean. Then, in
Section 4.2.2, working with these new random variables we use concentration inequalities
to prove (4.15) holds with high probability in Gp.

The result (4.16) follows more readily; indeed we have already proven a stronger result,
Lemma 4.6. It was proven using bounds on �(1� �) and |p� �|.

Finally, in Section 4.2.3, the two results (4.15) and (4.16) are combined with the result of
Lemma 4.8, which bounds the probability that a degree sequence will not be (", a)-regular
in the graph p-model, Gp. The combination of these yields Theorem 4.9 which states that
the probability of a degree sequence being pathological is asymptotically very small in the
graph p-model, Gp.

4.2.1 Restricted distribution on the degrees of vertices

We will introduce a truncated version of our random variables for the degrees of the white
vertices.
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4.2. Pathological degree sequences in Gp.

Definition 4.1 (truncated degree, S⇤j ).

S⇤j = max
�

np� n1/2+", min(np + n1/2+", Sj)
�

We will write S

⇤ := (S⇤
1

, . . . , S⇤m). The random variable S⇤j has a truncated distribution
of Sj. Note

P
Gp

�

S⇤j = x
�

:=

8

>

>

<

>

>

:

P
Gp

�

Sj = x
�

if |x� np| < n1/2+"

P
Gp

�

Sj � np + n1/2+"
�

if x = np + n1/2+"

P
Gp

�

Sj  np� n1/2+"
�

if x = np� n1/2+"

0 otherwise

-

6

�

?

0.05

0.10

45 50 55 60 65 70 75

-

6

�

?

0.05

0.10

45 50 55 60 65 70 75

Figure 4.1: Probability distributions of s
1

and s⇤
1

for n = 100, p = 0.6 and " = 0.

The advantage of our new random variables is twofold: each S⇤j is at most
p

n away
from the expected mean of the degrees of the white vertices, np, but also agrees with our
original random variable Sj on a large part of the domain. We make this claim of likely
agreement precise in the following lemma.

Lemma 4.2. Define Dp = (np� n1/2+", np + n1/2+")m ⇢ Rm.
Then,

P
Gp

�

S 2 Dp

�

� 1� e�n4"/3
(4.17)

and for any m-tuple x 2 Dp,

P
Gp

�

S

⇤ = x

�

= P
Gp

�

S = x

�

. (4.18)

Proof. Fix j. Note that by the definition of our new random variable S⇤j , we have that
for y 2 (np� n1/2+", np + n1/2+"),

P
Gp

�

S⇤j = y
�

= P
Gp

�

Sj = y
�

.
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Chapter 4. Graph p-model, Gp.

The extension to the m-dimensional probability space is then clear so we have (4.18).
To prove (4.17) we recall that degree of each white vertex is highly likely to concentrated
about its mean, np. By Lemma 4.1,

P
Gp

�

|Sj � np| � n1/2+"/3

�

 e�n3"/2

hence,

P
Gp

�

8j, |Sj � np|  n1/2+"/3) � 1� ne�n3"/2 � 1� e�n4"/3
. (4.19)

The result (4.17) follows directly from equation (4.19) and so we are done.

We now work with these new random variables S⇤j , where the distribution of the degree
of each vertex is restricted.

4.2.2 Bounding a function on the white degrees:
P

j(Sj � S)2.

The aim of this subsection is to show that the absolute di↵erence between the expressions
P

j(Sj�S)2 and pqmn is asymptotically likely to be small in the graph p-model, Gp. This
is done in Lemma 4.6 at the end of this subsection.

We begin with some algebraic trickery and note:

m
X

j=1

(Sj � S)2 = �m(S � np)2 +
m
X

j=1

(Sj � np)2. (4.20)

Line (4.20) and the triangle inequality now allow us to write:

�

�

X

j

(Sj � S)2 � pqmn
�

�  |m(S � np)2|+
�

�

X

j

(Sj � np)2 �
X

j

(S⇤j � np)2

�

�

+
�

�

X

j

(S⇤j � np)2 � E
Gp

�

X

j

(S⇤j � np)2

�

�

�+
�

�E
Gp

�

X

j

(S⇤j � np)2

�

� pqmn
�

�.
(4.21)

We note that when our m-tuple , S, for the degrees of the white vertices, lies within the
restriction of all m-tuples, S 2 Dp the following equality holds,

X

j

(Sj � np)2 =
X

j

(S⇤j � np)2.

In particular, whenever S 2 Dp, then by (4.21), we have
�

�

X

j

(Sj � S)2 � pqmn
�

�  |m(S � np)2|+
�

�

X

j

(S⇤j � np)2 � E
Gp

�

X

j

(S⇤j � np)2

�

�

�

+
�

�E
Gp

�

X

j

(S⇤j � np)2

�

� pqmn
�

�.
(4.22)
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4.2. Pathological degree sequences in Gp.

As we shall see next, each of three terms on the right hand side of (4.22) is asymptotically
very likely to be small in the graph p-model, Gp. We prove probabilistic bounds for these
three terms in Lemmas 4.3, 4.4 and 4.5 respectively. The first bound follows directly from
a bound shown in the previous section. To achieve the middle bound we use a concentra-
tion inequality while the last term can be bounded by properties of expectation and of
our random variables Sj and S⇤j .

We begin by bounding the first of these three terms on the right-hand side of (4.22) and
show that the magnitude of m(S � np)2 is small with high probability in Gp.

Lemma 4.3. Fix 0 < a < 1

2

and " > 0. Let Gp = Gp(m, n) be as in Definition 1.6. Let
S be the random variable that returns the average degree of the white vertices u

1

, . . . , um.
Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

|m(S � np)2| � n1+8"
�

 e�n2"

Proof. This follows by a previous result. By Lemma 4.1 (1), P
Gp

�

|S � np| � n3"
�

 e�n2"
.

An immediate corollary of this is

P
Gp

�

m(S � np)2 � m(n3")2

�

 e�n2"
.

Then, since n1+8" � m(n3")2 we have our result.

Lemma 4.4. Fix 0 < a < 1

2

and " > 0. Let Gp = Gp(m, n) be as in Definition 1.6. For
1  j  m, let S⇤j be the random variable which returns the truncated degree of the white
vertex uj. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

|
X

j

(S⇤j � np)2 � E
Gp

�

X

j

(S⇤j � np)2)| � n3/2+4"
�

 e�n2"
.

Proof. Fix a white vertex uj and consider its truncated degree S⇤j . By Definition 4.1 (trun-

cated degree) : |S⇤j � np|  n1/2+". This implies (S⇤j � np)2  n1+2". Because the last re-
sult is true always, we can say the same for the expectation, i.e. that E

Gp

�

(S⇤j � np)2

�

 n1+2".
Since both (S⇤j � np)2 and its expectation, E

Gp

�

(S⇤j � np)2

�

, are positive, we have

|(S⇤j � np)2 � E
Gp

�

(S⇤j � np)2

�

|  |max{(S⇤j � np)2, E
Gp

�

(S⇤j � np)2

�

}|  n1+2". (4.23)

These observations above hold for all 1  j  m. Define Xj = (S⇤j � np)2. Then because
the degrees (and hence the truncated degrees) of the white vertices are independent,
X

1

, . . . , Xn are independent random variables. By (4.23), these random variables satisfy
|Xj � E(Xj)|  n1+2" for 1  j  m. Hence we can apply Theorem 3.2 to get

P
Gp

�

|
X

j

(S⇤j � np)2 � E
Gp

�

X

j

(S⇤j � np)2)| � k
�

 e
�k2

2m(n1+2")2  e
�k2

n"n1+"n2+4"  e
�k2

n3+6" .
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Chapter 4. Graph p-model, Gp.

Substituting k = n3/2+4" gives the required result.

Lemma 4.5. Fix " > 0. Let Gp = Gp(m, n) be as in Definition 1.6. For 1  j  m let S⇤j
be the random variable which returns the truncated degree of the white vertex uj. Then
as m, n!1 subject to m = o(n1+") and n = o(n1+"),

|E
Gp

�

X

j

(Sj � np)2

�

� pqmn|  e�n7"/6
.

Proof. By calculations done in appendix, line (8.4), we know that

E
Gp

�

P

j(Sj � np)2

�

= pqmn.

Hence,

|E
Gp

�

X

j

(S⇤j � np)2

�

� pqmn| = |E
Gp

�

X

j

(S⇤j � np)2

�

� E
Gp

�

X

j

(Sj � np)2

�

|. (4.24)

So it is equivalent to bound the right-hand-side of (4.24). The proof now follows by
properties of expectation. Firstly, by the definition of expectation

E
Gp

�

X

j

(Sj � np)2

�

=
X

x

h

P
Gp

�

(S
1

, . . . , Sm) = x

�

X

j

(xj � np)2

i

E
Gp

�

X

j

(S⇤j � np)2

�

=
X

x

h

P
Gp

�

(S⇤
1

, . . . , S⇤m) = x

�

X

j

(xj � np)2

i

.

For any x 2 Dp, i.e. most degree sequences, x, of the white vertices,

P
Gp

�

S

⇤ = x

�

= P
Gp

�

S = x

�

.

Hence for x 2 Dp the corresponding terms in the sum below will cancel. Thus,

|E
Gp

�

X

j

(Sj � np)2

�

� E
Gp

�

X

j

(S⇤j � np)2

�

|  P
Gp

�

(s, t) : s /2 Dp

�

max
x

X

j

(xj � np)2

 e�n6"/5
mn2

 e�n7"/6

as required.

These three results (Lemmas 4.3,4.4 and 4.5) allow us to prove (4.15); indeed, we show a
slightly stronger result in the following lemma.
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4.2. Pathological degree sequences in Gp.

Lemma 4.6. Fix 0 < a < 1

2

and " > 0 such that a = a0 + " < 1

2

. Let Gp = Gp(m, n) be as
in Definition 1.6.

For 1  j  m, let Sj be random variable that returns the degree of the white vertex uj,
let S return the average of these degrees and let � return the edge density.

Then as m, n!1 subject to Conditions 4.1,

P
Gp

 

�

�

�

P

j(Sj � S)2 � pqmn

�(1� �)mn

�

�

�

� n�1/2+8"

!

 e�n6"/5

Proof. In the Lemmas 4.4, 4.3 and 4.5 we compiled the following probability bounds:

P
Gp

⇣

|m(S � np)2| � n3/2+5"
⌘

 e�n1/2�3"
(4.25)

P
Gp

⇣

|
X

j

(Sj � np)2 � E
Gp

�

X

j

(Sj � np)2

�

| � n3/2+3"
⌘

 e�n3"/2
(4.26)

�

�

�

E
Gp

�

X

j

(S⇤j � np)2

�

� pqmn
�

�

�

 e�n1/2
. (4.27)

By (4.22), for any s 2 Dp, our expression of interest,
�

�

P

j(sj � s)2 � pqmn
�

�, is bounded
above by the sum of the three terms in (4.25), (4.26) and (4.27).

Hence,

P
Gp

⇣

|
X

j

(Sj�S)2�pqmn|  n3/2+5"+n3/2+3"+e�n1/2
⌘

� 1�e�n1/2�3"�e�n3"/2�P
Gp

�

s /2 Dp

�

By Lemma 4.2, P
Gp

�

s /2 Dp

�

 e�n6"/5
. Also, 1� e�n1/2�3" � e�n3"/2 � e�n6"/5 � 1� e�n7"/6

.
So we have

P
Gp

⇣

|
X

j

(Sj � S)2 � pqmn|  n3/2+6"
⌘

� 1� e�n7"/6
.

By Lemma 4.7, � is acceptable for a, m and n with probability at least 1� e�n3"/2
. Hence,

by Lemma 4.5, �(1� �) > 1

ln n
> n�"/2, with this same probability. Hence,
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Chapter 4. Graph p-model, Gp.

P
Gp

⇣ |
P

j(Sj � S)2 � pqmn|
�(1� �)mn

 n�1/2+9"
⌘

� 1� e�n8"/7
.

This Lemma 4.6 together with Lemma 4.6 will enable us to show that for a random graph
in Gp its degree sequence (s, t), is unlikely to be pathological.

Corollary 4.7. Fix 0 < a < 1

2

and " > 0 such that a := a0 + " < 1

2

. Let Gp = Gp(m, n) be
as in Definition 1.6.
For 1  j  m, let Sj be random variable that returns the degree of the white vertex uj,
let S return the average of these degrees and let � return the edge density.

Then as m, n!1 subject to Conditions 4.1,

P
Gp

 

�

�

�

1�
P

j(Sj � S)2

�(1� �)mn

�

�

�

� n�1/2+9"

!

 e�n7"/6

Proof. This follows directly by Lemmas 4.6 and 4.6.

In the next section we will use this result, Corollary 4.7 and some symmetry arguments
to show that pathological degree sequences are rare in the graph p-model, Gp.

4.2.3 Likelihood of pathological degree sequences

Now that we have shown Corollary 4.7 we show that a similar probabilistic bound hold
for the degrees of the black vertices.

Lemma 4.8. Fix 0 < a < 1

2

and let " > 0 such that a0 := a + " < 1

2

. Let Gp = Gp(m, n)
be as in Definition 1.6.
For 1  k  n, let Tk be random variable that returns the degree of the black vertex vk,
let T return the average of these degrees and let � return the edge density.

Then as m, n!1 subject to Conditions 4.1,

P
Gp

 

�

�

�

1�
P

k(Tk � T )2

�(1� �)mn

�

�

�

� n�1/2+9"

!

 e�n8"/7
.

Proof. This proof will be done utilising symmetry.

Note that because n = o(m1+"), ln n < (1 + ") ln m. Hence,

a ln n < (a0 � ")(1 + ") ln m < a0 ln m (4.28)
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4.2. Pathological degree sequences in Gp.

Now, because p is acceptable for a, m and n and by (4.28) we can conclude that p is
acceptable for a0, n and m. Then by Corollary 4.7 swapping each instance of ‘S’ for ‘T ’
and each instance of ‘m’ for ‘n’. We can conclude that as m, n!1 the following holds.

P
Gp

 

�

�

�

1�
P

k(Tk � T )2

�(1� �)mn

�

�

�

� m�1/2+8"

!

 e�m6"/5
. (4.29)

Now the inequalities,

m1/2+8"  (cn1+")1/2+8" = c0n1/2+8"+"/2+8"2  n1/2+9"

e�m7"/6  e�(cn
1

1+"
)

7"/6
= e�n7"(1�"+"2�"3...)/6c7"/6  e�n8"/7

complete the proof.

Theorem 4.9. Fix a, b 2 R+ and " > 0 such that a+b < 1

2

, a0 = a+" < 1

2

and b+17" < 1.
Let Gp = Gp(m, n) be as in Definition. Then as m, n!1 subject to Conditions 4.1,

P
Gp

�

(S, T ) is (a, b,m, n, ")-pathological
�

 e�n10"/11
.

Proof. Together, Corollary 4.7 and Lemma 4.8 imply,

P
Gp

 

�

�

�

⇣

1�
P

j(Sj � S)2

�(1� �)mn

⌘⇣

1�
P

k(Tk � T )2

�(1� �)mn

⌘

�

�

�

� n�1+17"

!

 e�n9"/10
(4.30)

Note that n�1+17" = O(n�b) for b < 1 � 17". We are almost done. To finish, recall by
Lemma 4.8,

P
Gp

�

(S, T ) is not (", a)-regular
�

 e�n7"/6
.
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Chapter 5

Graph edge-model, GM .

This chapter concerns the graph edge-model, GM (see Definition 1.7 on page 5). In this
model every bipartite graph on (m, n) vertices with M edges is equally likely.

We will derive a simple formula for the probability of any non-(a, b,m, n, ")-pathological
degree sequence (s, t) in the graph edge-model, GM .

The starting point will be the enumeration result by Greenhill and McKay, Theorem 2.8
as in the last chapter on the graph p-model, Gp. Hence the first step will be (again) to show
that this formula is likely to be applicable to a random degree sequence in the probabil-
ity space. That is, we show that a degree sequence in GM is very likely to be (", a)-regular.

Then, to ensure the enumeration result simplifies we will also show that pathological de-
gree sequences are rare in GM . These two results on (", a)-regular and pathological degree
sequences are proven in Section 5.2.

To show these two results we will prove similar probabilistic bounds in GM to those al-
ready shown in the Gp model. The graph edge-model is the restriction of the Gp model
to graphs with M edges. Hence these two probability spaces are related which allows us
to derive Lemma 5.1. This lemma provides an upper bound on any event A occurring in
GM in terms of the probability of the same event A occurring in Gp. Using Lemma 5.1
the results on GM in Section 5.2 in this chapter follow from similar results on Gp in the
previous chapter.

We will need to refer to the following conditions.

Conditions 5.1. These conditions apply to an m-tuple s = s(m, n) = (s
1

, ..., sm) and an
n-tuple t = t(m, n) = (t

1

, ..., tn). The conditions depend on the parameters a and ".

For m, n!1,
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5.1. Relation to graph p-model, Gp.

• M
mn

is acceptable for a, m and n.

• m = o(n1+") and n = o(m1+").

5.1 Relation to graph p-model, Gp.

Lemma 5.1. Let X be a random variable defined on all bipartite graphs on (m, n) ver-
tices. Then for p = M

mn
, we have

P
GM (X)  mnP

Gp

�

X
�

.

Proof. The graph edge-model, GM , is the restriction of the graph p-model, Gp, to M edges,
so P

GM (X) = P
Gp

�

X|#edges = M
�

.

Now, let A, B be any random variables. We note by Bayes Theorem (given P(B = 1) > 0):

P
⇣

A | (B = 1)
⌘

=
P
⇣

A & (B = 1)
⌘

P(B = 1)
 P(A)

P(B = 1)
. (5.1)

We work in the graph p-model, Gp, and set the value of our parameter p = M
mn

.1In (5.1)
we substitute, for B, the indicator function, IM for the event that the graph has M edges.
Then substitute X for A and we have the following inequality.

P
GM (X) 

P
G

p= M
mn

(X)

P
G

p= M
mn

(IM = 1)
.

In the graph p-model, Gp, the number of edges in the graph is between 0 and mn inclusive;
indeed the number of edges in the graph is the binomial distribution (mn, p). Here the
most likely values for the number of edges are those close to the expected value, pmn. In
particular, because we chose p = M

mn
then the probability that the number of edges in the

graph is M is at least 1

mn
. That is P

G

M= M
mn

(IM = 1) � 1

mn
. This yields the desired result.

5.2 (", a)-regular and pathological degree sequences
in GM .

Here, we show that in the graph edge-model, GM , (", a)-regular degree sequences are
highly likely.

1Note by setting p = M
mn , p is acceptable for a, m and n if and only if M is acceptable for a, m and n.
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Chapter 5. Graph edge-model, GM .

Lemma 5.1. Fix a 2 R+ and " > 0 such that a < 1

2

. Let GM = GM(m, n) be as in
Definition 1.7. Then as m, n!1 subject to Conditions 5.1,

P
GM ( (S, T ) is not (", a)-regular )  e�n8"/7

Proof. By Lemma 4.8,

P
Gp

�

(S, T ) is (", a)-regular
�

� 1� e�n7"/6

Hence we know with probability at least 1� e�n6"/5
, that a degree sequence is likely to be

(", a)-regular in the graph p-model, Gp. So by Lemma 5.1 in the graph edge-model, GM ,

we know a degree sequence is (", a)-regular with probability at least 1 �mne�n7"/6
, i.e.

with probability at least 1� e�n8"/7
.

We also bound the probability that a random degree sequence is pathological in the graph
edge-model, GM .

Theorem 5.2. Fix a, b 2 R+ and " > 0 such that a+b < 1

2

, a0 = a+" < 1

2

and b+17" < 1.
Let GM = GM(m, n) be as in Definition 1.7. Then as m, n!1subjecttoConditions5.1,

P
GM ( (S, T ) is (a, b,m, n, ")-pathological )  e�n11"/12

.

Proof. We proceed directly from Theorem 4.9 in the same manner as the proof of Lemma 5.1.
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Chapter 6

Graph half -model, G
t

.

In our discussions pertaining to the graph half -model, G
t

, we will often refer to the
following set of conditions.

Conditions 6.1. These conditions apply to an m-tuple s = s(m, n) = (s
1

, ..., sm) and an
n-tuple t = t(m, n) = (t

1

, ..., tn). The conditions depend on the parameters a and ".

For m, n!1,

• tk � t is uniformly O(n1/2+") for 1  k  n.

• � = 1

mn

P

k tk is acceptable for a, m and n.

• m = o(n1+") and n = o(m1+").

6.1 (", a)-regular degree sequences in G
t

For a graph, G, chosen at random in G
t

we show that with high probability the degree
sequence (s, t) of G is (", a)-regular.

Lemma 6.1. Fix a 2 R+ and " > 0 such that a < 1

2

. Let G
t

= G
t

(m, n) be as in Definition
1.8. Then as m, n!1 subject to Conditions 6.1,

P
G

t

( (S, T ) is not (", a)-regular )  e�n6"/5

Proof. By the assumptions on the model, G
t

, we already have many of the requirements
of (", a)-regular. We have the required condition on the edge density, �, and also that
tk � t is uniformly o(n1/2+") for each graph in the domain of G

t

. Hence it is su�cient to
show that Sj � S is uniformly o(n1/2+") with probability greater than e�n6"/5

in G
t

. We
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.

shall use Theorem 3.1, a concentration result due to Cherno↵.

Fix a white vertex uj. For 1  k  n we consider the random variable Xj,k such that
Xj,k = 1 if there is an edge between uj and vk and zero otherwise. In our model G

t

the degrees of the vk’s are prescribed and any bipartite graph satisfying those degrees
is equally likely. Hence the tk edges emanating from vertex vk have an equal chance of
joining to any set of tk di↵erent vertices from u

1

to um. Therefore,

P
G

t

(Xj,k = 1) = tk/m. (6.1)

By the definition of our random variable, Sj =
P

k Xj,k. Note also that the expected
value of Sj is �n by the following calculation,

E(Sj) =
P

k P (Xj,k = 1) = m�1

P

k Tk = m�1�mn = �n.

The Xj,k are independent random variables, because the edges incident with one black
vertex do not a↵ect the probability that edges will be incident with any other black vertex.

We also note that since 0  Sj  n we have 0  E(Sj)  n. (This is a very crude bound
but it su�ces for this lemma.) Hence by Theorem 3.1, (letting k = n1/2+3"/4),

P
G

t

(|Sj � �n| � n1/2+3"/2) < 2e
�n1+3"/2

2(E(X)+n1/2+3"/2/3) < e�n5"/4
.

Hence,

P
G

t

(8j, |Sj � �n| < n1/2+3"/2) � 1�me�n5"/4 � 1� e�n6"/5
, (6.2)

and we have our result.

6.2 Pathological degree sequences in G
t

6.2.1 Locally ordered bipartite graphs

We will define a new probability space, G?
t

, over specially labelled bipartite graphs on
(m, n) vertices with black degree sequence t. We will show that the probability that a
random graph has any particular degree sequence (s, t) in G

t

and Ga

t

. Hence bound the
probability of non-pathological degree sequences in G

t

we instead prove the corresponding
bounds in G?

t

.

In order to define the probability space, G?
t

, we define an allowable labelling for the graphs
in the domain of G?

t

. We term these allowable labellings locally ordered. The name reflects
the relation to edge ordered labellings which are well studied in the literature, see, for
example [GK73].
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Definition 6.1 (edge-ordering). An edge ordering L of a graph G is a bijection from
the edges of G to {1, 2, . . . , |E(G)|}.

Definition 6.2 (locally ordered). A bipartite graph G on (m, n) vertices together with an
edge-labelling L is said to be locally ordered if, for each 1  k  m, the subgraph (and
sub-labelling) G\{vl : l 6= k} is edge ordered.

We will often write the locally ordered graph Go = (G, L) to refer to the graph G together
with the locally ordered labelling L.
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Figure 6.1: Here, Go is locally ordered because Go
1

, Go
2

, Go
3

and Go
4

are edge-ordered

6.2.2 Decision tree

For each triple of parameters t, m, n, we will construct a rooted tree. In this tree, the root
node corresponds to the set of all graphs on (m, n) vertices with black degree sequence t.
Also, the leaves of the tree each correspond to single graphs on (m, n) vertices with black
degree sequence t; one leaf for each such graph.

We illustrate the decision tree with black degree sequence t = (1, 1, 1) and vertices
(m, n) = (3, 3) in Figure 6.4. To define the structure of a decision tree in general re-
quires the following quagmire of definitions.

We define sets of tuples. Below, Stk is the group of permutations of the numbers from 1
to tk. We also write M =

P

k tk.
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Definition 6.3 (A,Al).

A := A(t) =
�

a : |a| = M & 8k, (aP
h<k th+1

, . . . , aP
hk th) 2 Stk

 

Al := Al(t) =
�

(a
1

, . . . , al) | (a1

, . . . , aM) 2 A(t)
 

Definition 6.4 (reference function R). This is defined for a n-tuple, t, and integer 1 
l  n. We define,

R(l, t) := (h, i) where l =
X

k<h

tk + i.

Definition 6.5 (Y a

l ). Let l-tuple a 2 Al and for each 1  i  l, let (hi, ri) = R(i, t).
Then define Y a

l = Y a

l (m, n, t) by,

Y a

l (m, n, t) :=
�

G 2 Bo
m,n,t : 8 1  i  l, (vhi , uri , ai) 2 Eo(G)

 

.

Each set of graphs Y a

l , corresponds to a node at level l in our decision tree. In Figure 6.2
we give some examples that relate to the decision tree in Figure 6.4 on p60.

Y (2)

1

=
n o

, , , , , , , ,

Y (1,1)

2

=
n o

Y (1,3)

2

=
n o

, , , ,

Y (1,1,1)

3

=
n o

Y (1,1,2)

3

=
n o

Y (1,3,2)

3

=
n o

Figure 6.2: We illustrate the sets Y a

l = Y a

l (3, 3, (1, 1, 1)) for various l-tuples a. Each Y a

l

is a subset of the set of all locally ordered bipartite graphs on (3, 3) vertices with black
degree sequence t. (All edges shown are labelled ‘1’.)

Decision tree construction for m, n, t.

• nodes
For each 0  l M , the set of nodes at level l in the tree is {Y a

l }a2Al
.
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• edges
Let a 2 Al for some 1  l M . Set a

0 = (a
1

, . . . , al�1

) and define the
parent of {Y a

l } to be {Y a

0
l�1

}. An edge is drawn between each node and
its parent node.

Note that if the l-tuple a and (l+1)-tuple b agree in their first l elements, then Y b

l+1

⇢ Y a

l .
Furthermore for the l-tuple a define Ca

l := {b 2 Al+1

: (b
1

, . . . , bl) = a}. Then the sets
{Y b

l+1

}
b2Ca

l
partition Y a

l . Hence the nodes defined form a decision tree as in [CL06, p.106].

We adopt the usual language of decision trees. For each b 2 Ca

l we call the node Y b

l+1

a
child of the node Y a

l . Also, two (l + 1)-tuples b, b0 2 Ca

l are termed sibling nodes.

6.2.3 Graph ordered-half -model, Ga

t

Definition 6.6 (Bo
m,n,t).

Bo
m,n,t

:= {locally ordered bipartite graphs on (m, n) vertices with black degree sequence t}.

Definition 6.7 (Graph ordered-half -model, Ga

t

). The graph ordered-half -model Ga

t

=
G(m, n,a, t) has domain Bo

m,n,t. Its support is the subset of these graphs, Y a

|a|(m, n, t). All
graphs in the support have equal probability.

When a = ? the only restriction on the edges in the support of Ga

t

is that the black
degree sequence is t. This is very similar to the graph half -model, G

t

, except in G?
t

all
edges have labels. Every graph in the support of G

t

corresponds to the same number or
labelled graphs in G?

t

. Hence, for any bipartite graph G with black degree sequence t,

P
G

t

(G) = P
G

?
t

({Go = (G, L) : for some locally ordered labelling L}). (6.3)

We illustrate some example calculations in Ga

t

in Figure 6.3.
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P
G

(3)
(1,1,1)

⇣ ⌘

= 1

9

P
G

(2)
(1,1,1)

⇣ ⌘

= 0

P
G

(1,2)
(1,1,1)

⇣ ⌘

= P
G

(1,2)
(1,1,1)

⇣ ⌘

= P
G

(1,2)
(1,1,1)

⇣ ⌘

= 1

3

Figure 6.3: We work in the probability spaces Ga

t

for t = (1, 1, 1) and various tuples a.
The domain in each case is the set of all locally ordered bipartite graphs on (3, 3) vertices
with black degree sequence (1, 1, 1). In the diagrams each edge has label ‘1’.

Definition 6.8 (near-regular). An locally ordered bipartite graph, G, is called near-
regular, (abbreviated nreg) if it satisfies,

8j, |sj(G)� �n| < n1/2+3"/2.

Corollary 6.9. Fix a 2 R+ and " > 0 such that a < 1

2

. Let G?
t

= G?
t

(m, n) be as in
Definition 6.7. Then as m, n!1 subject to Conditions 6.1,

P
G

?
t

(G is nreg) � 1� e�n6"/5
.

Proof. We have earlier observed, see (6.3), that any event on the degrees of a graph has the
same probability in G

t

and G?
t

. Now, note that by Definition 6.8 of a near-regular graph
G, that the statement we are required to prove is precisely (6.2). So we are done.

6.2.4 Edge-uncovering martingale

Fix 0  l  M , then the sets {Y a

l }a2Al
partition our domain, Bm,n,t. Hence, the power

set of these partitions,
Fl := {Y a

l }a2Al
(6.4)

is a �-algebra.

We are now in a position to define our martingale. For each 0  i  M , we define the
random variable,

Xi = E
G

?
t

�

X

j

(Sj � �n)2 | Fi

�

. (6.5)

In the next lemma we show that these random variables do indeed form a martingale.

Lemma 6.10. The random variables X
0

, . . . , XM as defined in (6.5) form a martingale.
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Proof. Notice that
�

P

j(Sj ��n)2

�

2

< (mn2)2 <1. This implies that each E(Xl)2 <1
for each 0  l M . Hence by the Definition 3.3 of martingales it remains now to show,

E
G

?
t

�

Xl+1

| Fl

�

= Xl. (6.6)

We show (6.6) by the following,

E
G

?
t

�

Xl+1

| Fl

�

= E
G

?
t

�

E
G

?
t

(
X

j

(Sj � �n)2 | Fl+1

) | Fl

�

= E
G

?
t

(
X

j

(Sj � �n)2 | Fl

�

(6.7)

= Xl.

The first and last lines follow by the definitions of Xl+1

and Xl respectively. Because
Fl ⇢ Fl+1

, line (6.7) follows by the tower of expectation property (see Lemma 3.5).

In the next section we will find a bound for |Xi �Xi+1

|. Actually, we find two bounds, a
weaker one that holds at all points in the domain and stronger one that holds for most
of the domain. This will then allow us to use the generalised Azuma Theorem, (our
Theorem 3.8), to bound the di↵erence, |X

0

�XM |.
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Figure 6.4: The decision tree for bipartite graphs on (3, 3) vertices with black degree sequence (1, 1, 1).

Let Xi = E(
P

j(Sj � S)2|Fi). For each node at level i in the tree we display the value of Xi(G) for graphs G at that node.

We have shaded the nodes at level i for which |Xi+1

(G)�Xi(G)| � 2 for graphs G at that node (such nodes are referred to

to as bad in the text). Note this is not the same cut-o↵ we use in our calculations.
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6.2.5 Bounding Arguments

Definition 6.11 (toxic). Fix 0  l M . Then l-tuple a 2 Al is toxic if

P
G

?
t

�

G not near-regular | G 2 Y a

l

�

> n�1/2.

Lemma 6.12. Fix 0  l  M , 0 < a < 1

2

and " > 0. Let G
t

= G
t

(m, n) be as in
Definition 6.7. Then as m, n!1 subject to Conditions 6.1,

P
G

?
t

�

{Y a

l : a toxic}
�

< n1/2e�n3"/2
.

Proof. This proof proceeds by contradiction. Assume that

P
G

?
t

�

{Y a

l : a toxic}
�

� n1/2e�n3"/2
.

Then,

P
G

?
t

�

G not nreg
�

=
X

a2Al

P
G

?
t

�

G not nreg | G 2 Y a

l

�

P
G

?
t

�

Y a

l

�

(6.8)

�
X

toxic a2Al

P
G

?
t

�

G not nreg | G 2 Y a

l

�

P
G

?
t

�

Y a

l

�

(6.9)

� n�1/2

X

toxic a2Al

P
G

?
t

�

Y a

l

�

(6.10)

> e�n3"/2
(6.11)

We justify the calculation above line by line. Line (6.8) follows by Bayes rule and because
the sets {Y a

l }a2Al
partition all graphs, Bm,n,t, in the domain of G?

t

. Line (6.9) then follows
because all probabilities are non-negative. Definition 6.11 then implies (6.10). The last
line, (6.11) follows by our assumptive hypothesis.

To complete the proof, observe that (6.11) contradicts Corollary (6.9).

Definition 6.13 (bad). Fix 1  l M . Then l-tuple a 2 Al is bad if Y a

l is toxic or has
a sibling node which is toxic.

Lemma 6.14. Fix 0  l  M , 0 < a < 1

2

and " > 0. Let G
t

= G
t

(m, n) be as in
Definition 6.7. Then as m, n!1 subject to Conditions 6.1,

P
G

?
t

�

{Y a

l : a bad}
�

< n3/2+"e�n3"/2
.

Proof. This follows because there at most m children to any node. Hence,

P
G

?
t

�

{Y a

l : a bad}
�

< mP
G

?
t

�

{Y a

l : a toxic}
�

< n3/2+"e�n3"/2
.
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Bijection between sibling nodes, �G!H Consider the two sets of bipartite graphs:
Y a

l and Y b

l , where |a| = |b| = l. When a and b di↵er only in the last element we expect
the graphs in the two sets to be somewhat similar.1

We make this idea precise by defining a bijection � from each graph in Y a

l to one in Y b

l

with symmetric di↵erence at most four labelled edges. The intuitive idea of the bijection
� is we want to match each H 2 Y a

l with the closest resembling H 0 2 Y b

l .

Definition 6.15 (graph match bijection �a!b

l ). �a!b

l = �a!b

l (t, m, n) : Y a

l ! Y b

l .

The map is defined when Y a

l , Y b

l are both subsets of locally ordered bipartite graphs on
(m, n) vertices with black degree sequence t and ah = bh for all 1  h < l.

Let (h, i) = f
t

(l) and fix G 2 Y a

l . We specify the graph �(G) by giving the symmetric
di↵erence 4 between the labelled edge sets of G and �(G). There are two possibilities for
edge labellings of G which give the following two symmetric di↵erences:

if (vh, vbi , r) 2 E(Go) (for some r > i),
then Eo(Go)4Eo(�(Go)) = {(uai , vk, i), (ubi , vk, r), (uai , vk, r), (ubi , vk, i)}

else,

Eo(Go)4Eo(�(Go)) = {(uai , vk, i), (ubi , vk, i)}.

We shall give an example. Consider locally ordered bipartite graphs on (4,4) vertices, with
black degree sequence t =(1,2,3,2). We illustrate � = �(4, 4, (1, 2, 3, 2)) by displaying the
two graphs H0

1

and H0

2

before and after the map � is applied. See Figure 6.5.

1In the language of decision trees, this is equivalent to saying Y a

l and Y b

l are sibling nodes. We define
a bijection sending graphs at a node into any sibling node.
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• •

• •

• •

• •
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Figure 6.5: In the illustration the bijection map � is,
� = �((1),(2,1),(3,1))!((1),(2,1),(3,4))

5

: Y ((1)(2,1)(3,1))

5

! Y ((1)(2,1)(3,4))

5

.

Bounds between a node and its child

Lemma 6.16. Let G be an locally ordered bipartite graph on (m, n) vertices with black
degree sequence t. Fix a white vertex uj.

1. Then,

|
X

j

(sj(G)� �n)2 �
X

j

(sj(�(G))� �n)2| < 2n + 2.

2. Additionally, suppose that G is near-regular, then,

|
X

j

(sj(G)� �n)2 �
X

j

(sj(�(G))� �n)2| < 2n1/2+" + 2.

Proof. By property of � either both G and �(G) have the same edge set (with two pairs
of labels interchanged) or G can be obtained from �(G) by moving one edge. In the first
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case our lemma is trivially true, so we assume the second. Hence for some 1  r, q  m
and some 1  k  n, we have E(G)4E(�(G)) = (ur, vk) + (uq, vk). Assume, w.l.o.g that
(ur, vk) 2 E(G), then,

X

j

(sj(G)� �n)2 �
X

j

(sj(�(G))� �n)2

= (sr(G)� �n)2 + (sq(G)� �n)2 � (sr(�(G))� �n)2 � (sq(�(G))� �n)2

= (sr(G)� �n)2 + (sq(G)� �n)2 � (sr(G)� 1� �n)2 + (sq(G) + 1� �n)2

= 2(sr(G)� �n)� 2(sq(G)� �n) + 2 (6.12)

Note that (6.12) can be simplified further. Taking absolute values,

|2(sr(G)� �n)� 2(sq(G)� �n) + 2| = |2(sr(G)� sq(G)) + 2|  2n + 2. (6.13)

The bound (6.13) follows because the degrees of any two white vertices must lie between
zero and n and hence their absolute di↵erence is less than or equal to n. This proves part a.

When we make the additional assumptions in (2) we can see that the last line (6.12) must
be less than 2n1/2+" + 2. This follows because we required, in G, that |(Sj(G) � �n)| <
n1/2+" for each j. This completes the proof of (2).

For the following proof it will be convenient to define P i+1(G) = P
G

?
t

(H)/
P

J⌘iH
P
G

?
t

(J).
This notation is consistent with that used in [SS87], on which we have modelled the
method of our proof.

Lemma 6.17.

Let X : ⌦ ! R be the random variable, X(G) :=
P

j(Sj(G) � �n)2. For 0  i  M let
Xi be the random variable defined in (6.5).

1. Then,

|Xi+1

(G)�Xi(G)| < 2n + 2.

2. Additionally, suppose that we have a good i-tuple a. Then for G 2 Y a

i ,

|Xi+1

(G)�Xi(G)| < n1/2+2"
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Proof. (of 2.) We prove the more restricted case first.

Fix G 2 Y a

i . Then doing average of averages,2

Xi(G) =
X

H⌘iG

Xi+1

(H)P i(H) (6.14)

) Xi+1

(G)�Xi(G) =
X

H⌘iG

�

Xi+1

(G)�Xi+1

(H)
�

P i(H). (6.15)

Fix H ⌘i G, then, similarly to (6.14):

Xi+1

(G) =
X

J⌘i+1G

X(J)P i+1(J) (6.16)

Xi+1

(H) =
X

K⌘i+1H

X(K)P i+1(K). (6.17)

We want to bound the di↵erence between (6.16) and (6.17). Consider the bijection:

� = �G!H
i+1

: {J : J ⌘i+1

G}! {K : K ⌘i+1

H}.

Also note by the definition of the nodes in the decision tree, P i+1(J) = P i+1(�(J)). Hence
can apply this bijection to obtain

Xi+1

(G)�Xi+1

(H) =
X

J⌘i+1G

�

Xi+1

(J)�Xi+1

(�(J))
�

P i+1(J). (6.18)

By Lemma 6.16, for each near-regular J ⌘i+1

G we have,

�

�Xi+1

(J)�Xi+1

(�(J))
�

� < 2n1/2+" + 2, (6.19)

2Quote from Shamir and Spencer, this theorem is somewhat analogous to Theorem 5 in [SS87] from
which the quote originates. We follow their method quite closely. Note that Shamir and Spencer find a
single bound for all G whereas we find bounds for two separate cases. In their case the random variable
X(G) is defined to be the chromatic number of G, for more information on the proof by Shamir and
Spencer refer to Section 3.2.4 in this thesis.

65



Chapter 6. Graph half -model, G
t

.

and, for each not near-regular J ⌘i+1

G we have,
�

�Xi+1

(J)�Xi+1

(�(J))
�

� < 2n + 2. (6.20)

By (6.18):
�

�Xi+1

(G)�Xi+1

(H)
�

�

=
X

nreg J⌘i+1G

�

Xi+1

(J)�Xi+1

(�(J))
�

P i+1(J)

+
X

not nreg J⌘i+1G

�

Xi+1

(J)�Xi+1

(�(J))
�

P i+1(J)

=
�

2n1/2+" + 2
�

X

nreg J⌘i+1G

P i+1(J)

+
�

2n + 2
�

X

not nreg J⌘i+1G

P i+1(J) (6.21)

=
�

2n1/2+" + 2
��

1� n�1/2

�

+
�

2n + 2
�

n�1/2 (6.22)

< n1/2+2" (6.23)

We justify the above line by line. The first line follows directly from (6.18) and the defini-
tion of near-regular graphs. Noting the bounds in (6.19) and (6.20) for near-regular and
general graphs respectively yields (6.21). Then (6.22) follows by Lemma 6.14.

So then by (6.15),
�

�Xi(G)�Xi+1

(G)
�

� < n1/2+2"

which yields the desired result.

Proof. (of 1.) The proof of this case follows the above proof exactly excepting that do
not assume any J ⌘i+1

G are near-regular. So we have a weaker bound. For a general
graph G from Lemma 6.16(1) we have, for each J ⌘i+1

G,
�

�Xi+1

(J)�Xi+1

(�(J))
�

� < 2n + 2.

And hence we have
�

�Xi(G)�Xi+1

(G)
�

� < 2n + 2,

as required.
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Lemma 6.18. Fix 0  l  M , 0 < a < 1

2

and " > 0. Let G
t

= G
t

(m, n) be as in
Definition 6.7. For 1  j  m, let Sj be the random variable that returns the degree of
the white vertex uj.

Then as m, n!1 subject to Conditions 6.1,

P
G

t

⇣

�

�

�

P

j(Sj � �n)2 � E
G

t

�

P

j(Sj � �n)2

�

�(1� �)mn

�

�

�

> n�1/2+7"
⌘

< e�n3"/2
.

Proof. Observe first that by Lemma 4.5, �(1��) > 1

ln n
> n�"/2, and so 1

�(1��)mn
> n�2+2".

Thus it is su�cient to prove,

P
G

t

⇣

�

�

�

X

j

(Sj � �n)2 � E
G

t

�

X

j

(Sj � �n)2

�

�

�

�

> n3/2+5"
⌘

< e�n3"/2
. (6.24)

Let c = n1/2+2" and ⌘ = n7"/2e�6"/5. To prove (6.24) we will show that the random vari-
ables, X

0

, . . . , XM form a near-c-Lipschitz martingale with exceptional probability ⌘.

By Lemma 6.10, we already have that X
0

, . . . , XM form a martingale.

Let G 2 Y a

l for some good node Y a

l . Then |Xi � Xi+1

|(G) < c. This is shown in
Lemma 6.17. Hence for a fixed l we can bound the set of graphs {G0} for which |Xi �
Xi+1

|(G0) � c, by taking the union of all bad nodes at level l of the tree. So we bound
the sum of probability of all bad nodes over all levels, l, of the decision tree,

M
X

l=1

P
G

?
t

�

{Y a

l : a bad}
�

< Mn3"/2e�n6"/5
< n7"/2e�6"/5 (6.25)

In (6.25) the first inequality follows by Lemma 6.14 and the second inequality follows
because M  mn and m = o(n1+"). This shows our values for ⌘ and c hold and so
X

0

, . . . , Xn form a near-c-Lipschitz martingale with exceptional probability ⌘.

We can now substitute these values of c and ⌘ into the generalised Azuma inequality
(Theorem 3.8), to yield (6.24).

6.2.6 Expectation of
P

j(Sj � �n)2

The aim of this Section is to show that (a, b,m, n, ")-pathological degree sequences are
rare in G

t

. We already have Lemma 6.1 which shows non-(", a)-regular sequences are

very rare. Hence our current task is showing
�

1�
P

j(Sj��n)

2

�(1��)mn

��

1�
P

k(Tk��m)

2

�(1��)mn

�

= O(n�b)
with high probability. So far we have shown in Lemma 6.18 that with high probabil-

ity
P

j(Sj��n)

2
�E(

P
j(Sj��n)

2
)

�(1��)mn
= O(n�b). Hence now we want to show that

E(

P
j(Sj��n)

2
)

�(1��)mn
=
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1 + O(n�b). This is done in Lemma 6.19 below. Before we can prove this, however, we
need to calculate some preliminary expectations on our random variables for the white
vertex degrees: s

1

, . . . , sm.

Fix Sj, we derived earlier in line (6.1) the probability that there is an edge between uj

and vk is precisely m�1tk. Hence we can write a probability generating function, B(x),
for Sj in G

t

.

B(x) =
n
Y

k=1

� tk
m

x +
m� tk

m

�

We can now calculate the expectation of Sj and of S2

j . By the theory of generating func-
tions explained in Section 3.3 this requires the evaluation of some di↵erential operators
on the function B(x). These are slightly messy and so are relegated to the appendix, the
following two results are from lines (8.5) and (8.6). Note these hold for all j.

E
G

t

(Sj) =
�

x d
dx

B(x)
�

x=1

= �n

E
G

t

(S2

j ) =
�

x d
dx

x d
dx

B(x)
�

x=1

= �n + �2n2 �m�2

P

k t2k

(6.26)

We are now in a position to prove our result.

Lemma 6.19. Let G
t

= G
t

(m, n) be as in Definition 1.8. For 1  j  m, let Sj be
the random variable that returns the degree of the white vertex uj. Then as m, n ! 1
subject to Conditions 6.1,

E
G

t

(
P

j(Sj � �n)2)

�(1� �)mn
= 1 + o(n�1+5").

Proof. We first calculate the expectation of
P

j(Sj��n)2 using the values for expectation
from (6.26).

E
G

t

(
X

j

(Sj � �n)2) = E
G

t

(
X

j

(Sj � �n)2)

= E
G

t

(
X

j

S2

j )� �2mn2

= �mn + �2mn2 �m�1

X

k

t2k � �2mn2

= �mn�m�1

X

k

t2k (6.27)
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Fix 0  k  n, by assumption, tk � �m = o(n1/2+") and so
P

k(tk � �m)2 = o(n2+2"). By
Lemma 4.5, because � is acceptable for a, m and n, �(1� �) > ln n. Hence we have,

P

k(tk � �m)2

�(1� �)mn
= o(n3") (6.28)

The calculations below use (6.28) to derive a value for
P

k t2k,

P

k(tk �m�)2

�(1� �)mn
= o(n3")

o(n3")�(1� �)mn =
X

k

(tk �m�)2

=
X

k

(t2k)� 2m�
X

k

(tk)� �2m2n

)
X

k

t2k = �2m2n + o(n3")�(1� �)mn.

This approximate value for
P

k t2k can then be used to bound
E(

P
j(Sj��n)

2
)

�(1��)mn
. By inequality

(6.27),

E
G

t

(
P

j(Sj � �n)2)

�(1� �)mn
=

�mn� �2mn + �(1� �)n

�(1� �)mn
+ o(n�3"m�1)

= 1 + m�1 + o(n�3"m�1)

= 1 + o(n�1+5")

This is exactly what we wanted. We can are now ready to show that pathological degree
sequences are rare in the graph half -model, G

t

.

Theorem 6.20. Fix a, b 2 R+ and " > 0 such that 0 < a + b < 1

2

and b + 11" < 1/2. Let
G

t

= G
t

(m, n) be as in Definition 1.8.
For 1  j  m, let Sj be the random variable that returns the degree of the white vertex
uj.
Then as m, n!1 subject to Conditions 6.1,

P
G

t

�

(S, T ) is (a, b,m, n, ")-pathological
�

 e�n7"/6
.
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Proof. By Lemma 6.1,

P
G

t

( (S, T ) is not (", a)-regular )  e�n6"/5
.

Hence it is su�cient to show that,

P
G

t

 

✓

1�
P

j(Sj � S)2

�(1� �)mn

◆✓

1�
P

k(Tk � T )2

�(1� �)mn

◆

= O(n�b)

!

� 1� e�n3"/2
(6.29)

The assumptions of this model imply that the average degree of the white vertices is
determined by the m-tuple t, and so S = �n. By two of our previous results, Lemmas
6.19 and 6.18,

P
G

t

 

�

�

�

�

P

j(Sj � �n)2

�(1� �)mn

�

�

�

�

> n�1/2+7" + 1 + o(n�1+5")

!

< e�n3"/2
. (6.30)

Finally, recall by the assumptions of the graph half -model, G
t

, all random graphs in G
t

have black degree sequence t. Hence, T = �m and for each 1  k  n, Tk = tk. By
(6.28),

P

k(tk � �m)2

�(1� �)mn
= o(n3"). (6.31)

Combining (6.30) and (6.31) then yields,

P
G

t

 

�

�

�

�

✓

1�
P

j(Sj � S)2

�(1� �)mn

◆✓

1�
P

k(Tk � T )2

�(1� �)mn

◆

�

�

�

�

> n�1/2+11"

!

 e�n3"/2
(6.32)

In particular, because b + 11" < 1/2, we get n�1/2+11" = O(n�b). Thus, (6.32) implies
(6.29) and so we are done.
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Part III

New results:
Approximation by binomial models
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In this section we will define simple binomial probability models in which the probability
of an (m + n)-tuple (s, t) is asymptotically very close to the probability of a degree se-
quence (s, t) occurring in the random graph models.

There are three random bipartite graph models for which we find a corresponding bino-
mial model. These three models are the graph p-model, Gp, the graph edge-model, GM ,
and the graph half -model, G

t

. (See Definitions 1.6, 1.7 and 1.8 respectively.)

To achieve this we construct binomial models which we call the binomial p-model, Bp,
binomial edge-model, BM , and binomial half -model, B

t

, respectively. The latter two bi-
nomial models BM and B

t

straight away match very closely with GM and G
t

. The first
case needs more work and so we define an integrated version of Bp, the binomial inte-
grated -model, denoted Vp, which then matches the graph p-model, Gp very closely.

We construct the binomial probability spaces Bp, BM and B
t

as restrictions of a common
probability space, the binomial independent-model, denoted Ip. The independent-model
is defined in terms of random variables S

1

, . . . , Sm which are independent binomials with
parameters (n,p) and random variables T

1

, . . . , Tn which are independent binomials with
parameters (m,p). The three binomial models are then defined by considering di↵erent
subspaces (corresponding to di↵erent constraints) of this independent-model Ip.

We proceed by first defining our binomial models in Section 7.1. After this we show the
correspondences between these binomial models and our random graph models in Section
7.2. The ordering of Section 7.2 reflects the di�culty in obtaining these correspondences
and so we defer our discussion the graph p-model, Gp to Section 7.2.3, after the graph
edge-model, GM and the graph half -model, G

t

in Subsections 7.2.1 and 7.2.2 respectively.
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Binomial probability spaces

7.1 Definition of binomial models

7.1.1 Binomial independent-model, Ip.

We define our binomial probability models in terms of a common model (with some added
constraints). This core model, we call the binomial independent-model, Ip.

Definition 7.1 (Binomial independent-model, Ip.). The binomial independent-model
Ip = Ip(m, n) is an (m+n)-dimensional probability space with domain {0, 1, 2, . . . , n}m⇥
{0, 1, 2, . . . ,m}n. For j = 1, . . . ,m and k = 1, . . . , n we define Sj and Tk to be independent
binomially distributed random variables with parameters (n, p) and (m, p) respectively.
That is, we have, P

Ip(Sj = a) =
�

n
a

�

pa(1� p)n�a and P
Ip(Tk = a) =

�

m
a

�

pa(1� p)m�a. Our
(m+n)-dimensional space has the random variables (S = (S

1

, . . . , Sm), T = (T
1

, . . . , Tn)).

The probability of the (m+n)-tuple, (s, t), in the binomial independent-model,
Ip is given by,

P
Ip(S = s, T = t) =

m
Y

j=1

✓

n

sj

◆

psjqn�sj

n
Y

k=1

✓

m

tk

◆

ptkqm�tk .

We will proceed to define our other binomial models as probability spaces on a subset of
the domain of the independent-model, Ip.

7.1.2 Binomial p-model, Bp.

Our constraint for the first binomial model is to require that the only (m + n)-tuples
(s, t) with non-zero probability in the space are those for which the sum of the first m
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terms is the same as the sum of the last n terms, i.e. (s, t) 2 Im,n. Note this is a sensible
constraint. We are hoping to use these binomial models to approximate the random
bipartite graph models. The (m+n)-tuples in the domain of Bp will correspond to degree
sequences in random bipartite graphs on (m, n) vertices. Recall that the number of edges
in a bipartite graph can calculated by summing up the degrees of the vertices on either
side. In particular, these two sums, the sums of the degrees of the white vertices and
the sums of the degrees of the black vertices should be equal. This is our motivation for
defining the binomial p-model, Bp.

Definition 7.2 (Binomial p-model, Bp.). The binomial p-model Bp = Bp(m, n) has the
same domain as Ip with support Im,n. We formally define the probability space, binomial
p-model, Bp as a restriction of the space of independent binomials, Ip, as follows

P
Bp

�

S = s, T = t

�

:= P
Ip

⇣

S = s, T = t |
X

j

Sj =
X

k

Tk

⌘

.

As we alluded to earlier, finding a corresponding binomial model for the graph p-model
requires more work than for the other random graph models. This binomial p-model will
be used as a stepping stone in constructing a probability model that approximates the
graph p-model. Indeed in Definition 7.7 we will introduce a binomial integrated -model, Vp,
which is a convolution of Bp with a normal distribution. This binomial integrated -model,
Vp is shown to correspond to the graph p-model in Section 7.2.4.

We will calculate the probability of an (m + n)-tuple, (s, t) in the binomial p-model.
However, this result is left until Section 7.2.3 as it uses results from the following section
where we introduce the binomial edge-model.

7.1.3 Binomial edge-model, BM .

The random variables in the binomial edge-model, BM , inherit the property (
P

j Sj =
P

k Tk) from the binomial p-model just defined. The parameter M will correspond to the
number of edges in the bipartite graph. So in this model we have the extra constraint
on (S, T ) which corresponds to the number of edges in the bipartite graph. Hence we
require the stricter property (

P

j Sj =
P

k Tk = M), i.e. (S, T ) 2 Im,n,M .

Definition 7.3 (Binomial edge-model, BM .). The binomial edge-model BM = BM(m, n)
has support Im,n,M . We formally define the probability space, binomial edge-model, BM
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as a restriction of the space of independent binomials, Ip, as follows

P
BM (S = s, T = t) := P

Ip

⇣

S = s, T = t |
X

j

Sj =
X

k

Tk = M
⌘

.

We now show an example calculation in the binomial edge-model, BM = BM(4, 3) where
our parameter, M is equal to six. The probability of the (4 + 3)-tuple, (1, 3, 1, 1; 2, 1, 3)
is then,

P
BM=6((1, 3, 1, 1)(2, 1, 3)) =

�

3

1

�

pq2

�

3

3

�

p3

�

3

1

�

pq2

�

3

1

�

pq2

�

4

2

�

p2q2

�

4

1

�

pq3

�

4

3

�

p3q
�

12

6

�

p6q6

�

12

6

�

p6q6

=

�

3

1

��

3

3

��

3

1

��

3

1

��

4

2

��

4

1

��

4

3

�

�

12

6

��

12

6

� =
18

772

.

Observe that in the calculation above, all appearances of p and q cancelled.

We show this is true in general, i.e. the probability of an (m + n)-tuple (s, t) in the
binomial edge-model, BM , is independent of p. In the following lemma, we calculate the
probability of (s, t) in the binomial edge-model, BM , where (s, t) is an (m+n)-tuple that
has some of the necessary properties of a degree sequence of a bipartite graph with M
edges on vertices (m, n). Hence, we require that (s, t) 2 {0, 1, . . . , n}m ⇥ {0, 1, . . . ,m}n

satisfies
P

j sj =
P

k tk = M , i.e. we require (s, t) 2 Im,n,M .

Lemma 7.4. Fix an (m + n)-tuple (s, t) 2 Im,n,M . Then we have

P
BM (S = s, T = t) =

✓

mn

M

◆

�2

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

.

Proof. This follows by the short calculation given below. Note the first line is the definition
of the binomial edge-model, BM . Then, (7.1) follows by Bayes law. In (7.2) we factor the
denominator using the independence of all random variables in the independent-model,
Ip and can simplify the numerator because we have already required that (s, t) 2 Im,n,M .

P
BM (S = s, T = t) = P

Ip

⇣

S = s, T = t |
X

j

Sj =
X

k

Tk = M
⌘

=
P
Ip

⇣

S = s, T = t &
P

j Sj =
P

k Tk = M
⌘

P
Ip

⇣

P

j Sj =
P

k Tk = M
⌘ (7.1)

=
P
Ip(S = s, T = t)

P
Ip

⇣

P

j Sj = M
⌘

P
Ip

⇣

P

k Tk = M
⌘ (7.2)
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In (7.2), P
BM (S = s, T = t) has been reduced to known quantities. Line (7.3) now follows

by the definition of the independent-model, Ip. Lastly, in (7.3) all instances of p and q
cancel and we have our result.

=
m
Y

j=1

✓

n

sj

◆

psjqn�sj

n
Y

k=1

✓

m

tk

◆

ptkqm�tk
�

✓

mn

M

◆

pMqmn�M
�

�2

(7.3)

=

✓

mn

M

◆

�2

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

(7.4)

Later, Theorem 7.1 shows that for non-pathological degree sequences, (s, t), P
BM (s, t) is

asymptotically very close to the probability of (s, t) occurring in the graph edge-model,
GM under suitable constraints on M .

7.1.4 Binomial half -model, B
t

.

We define a binomial model which will corresponds to the graph half -model, G
t

. We term
this the binomial half -model and denote it by B

t

.

Recall that the graph half -model, G
t

, is a probability space unique to bipartite graphs. In
this graph model, we fix the degrees of our black vertices and are interested in the likely
distribution of the degrees of the white vertices, given this constraint.

The binomial half -model, B
t

, inherits both the property that (
P

j Sj =
P

k Tk) from the
binomial p-model, Bp, and the stricter property that (

P

j Sj =
P

k Tk = M) from the
binomial edge-model, BM . Also, in the binomial half -model we have the yet stricter con-
straint that the values of the Tk (and not just their sum) are fixed. That is, we fix the
values of the random variables T = (T

1

, T
2

, . . . , Tn).

The intuition behind this constraint is that the random variables, (T
1

, T
2

, . . . , Tn), in the
binomial half -model, B

t

, will correspond to the random variables for the degrees of the
black vertices, (T

1

, T
2

, . . . , Tn), in the graph half -model, G
t

. In particular, one of the
parameters of the binomial half -model, B

t

, is the n-tuple t and we work in the subset of
the domain of Ip where T = t. We define this concept formally below.

Definition 7.5 (Binomial half -model, B
t

.). The binomial half -model B
t

= B
t

(m, n, t)
has support In,m,t. We formally define binomial half -model, B

t

, as a restriction of the
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space Ip. Note t is a parameter of the space.

P
B

t

(S = s, T = t) := P
Ip

⇣

S = s, T = t | T = t,
X

j

Sj =
X

k

tk
⌘

In the binomial half -model, B
t

, the probability of obtaining an (m+n)�tuple is indepen-
dent of the parameter p. We showed this for the edge-model in Lemma 7.4. Recall that
the binomial half -model is defined as a subspace of the binomial independent-model, Ip,
which is dependent on p. We prove this result in the following lemma.

Lemma 7.6. Fix an (m + n)-tuple (s, t) 2 Im,n,t and set M =
P

k tk. Then we have

P
B

t

(S = s, T = t) =

✓

mn

M

◆

�1

m
Y

j=1

✓

n

sj

◆

.

Proof. The proof is very similar to that for Lemma 7.4.

Note the first line, (7.5) is the definition of the binomial half -model, B
t

. Line (7.6) follows
by Bayes law. In (7.7) we factor the denominator using the independence of all random
variables in the independent-model, Ip and we can simplify the numerator because we
have already required that (s, t) 2 Im,n,t.

P
BM (S = s, T = t) = P

Ip

⇣

S = s, T = t |
X

j

Sj =
X

k

Tk & T = t

⌘

(7.5)

=
P
Ip

⇣

S = s & T = t &
P

j Sj =
P

k Tk & T = t

⌘

P
Ip

⇣

P

j Sj = M & T = t

⌘ (7.6)

=
P
Ip

�

S = s

�

P
Ip

�

T = t

�

P
Ip

⇣

P

j Sj = M
⌘

P
Ip

⇣

T = t

⌘ (7.7)

We are almost done. Line (7.8) follows by the definition of the independent-model, Ip.
Lastly, all instances of p and q cancel in (7.9) and we have our result.

P
BM (S = s, T = t) =

m
Y

j=1

✓

n

sj

◆

psjqn�sj

 

✓

mn

M

◆

pMqmn�M

!

�1

(7.8)

=

✓

mn

M

◆

�1

m
Y

j=1

✓

n

sj

◆

(7.9)
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7.2 Relation to random graph models

In the previous section we defined some binomially based probability spaces. In this
section we will show that the probability of a given (non-pathological) degree sequence
(s, t) in each of the random graph models is asymptotically very close to the probability
of the same (m + n)-tuple (s, t) in one of our newly defined binomial models.

Of these correspondences between our three graph models and the binomial models, two
of these are easily shown. We do these cases first. In Section 7.2.1 we show that the
random graph edge-model, GM , can be approximated by our binomial edge-model, BM .
Then in a similar fashion we show that the graph half -model, G

t

, can be approximated
by the binomial half -model, B

t

, in Section 7.2.2. The third random graph model, the
p-model, Gp, requires more work. We will construct another probability space, the bino-
mial integrated -model, Vp, based on the binomial p-model, Bp. After some calculations we
show that this newly defined binomial integrated -model, Vp, can be used to approximate
the probability of non-pathological degree sequences (s, t) in the graph p-model, Gp. This
final case is done is Section 7.2.3.

7.2.1 Binomial edge-model, BM ⇠ graph edge-model, GM .

We show that for non-pathologicaldegree sequences (s, t) the probability of that degree
sequence occurring in the graph edge-model, GM , is very close to the probability of the
same (m + n)-tuple in the binomial edge-model, BM .

Theorem 7.1. Fix a, b 2 R+ such that a+ b < 1

2

. Let GM = GM(m, n) be as in Definition
1.7 and BM = BM(m, n) as in Definition 7.3. Then there exists " > 0 such that as
m, n ! 1 subject to Conditions 5.1, for non-(a, b,m, n, ")-pathological degree sequence
(s, t) 2 Im,n,M ,

P
GM (s, t) = P

BM (s, t)(1 + O(n�b)).

Proof. We first calculate the probability of a fixed non-pathological degree sequence (s, t) in
the graph edge-model, GM . From Definition 1.6 we have

P
GM (s, t) := P

GM (H : the degree sequence of H is (s, t)).

Hence P
GM (s, t) can be calculated by taking the number of bipartite graphs with degree

sequence (s, t) and dividing by the total number of labelled bipartite graphs on (m, n)
vertices with M edges. There are

�

mn
M

�

graphs on (m, n) vertices with M edges. Let us
denote the number of bipartite graphs with degree sequence (s, t) by |B(s, t)|. Hence,
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P
GM (s, t) :=

✓

mn

M

◆

�1

|B(s, t)|. (7.10)

By Corollary 2.10, for p which is acceptable for a, m and n and non-(a, b,m, n, ")-pathological
degree sequences, (s, t), we have an approximate count of the number of graphs with that
degree sequence, i.e. an approximate value for |B(s, t)|. We substitute this value for
|B(s, t)| in (7.10) to yield,

P
GM (s, t) =

✓

mn

M

◆

�2

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

exp(O(n�b)). (7.11)

The form of the right-hand side is very similar to that for the probability of an (m + n)-
tuple (s, t) in the binomial edge-model BM . In particular by Lemma 7.4,

P
BM (s, t) =

✓

mn

M

◆

�2

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

. (7.12)

We now substitute the expression for P
BM (s, t) in (7.12) into line (7.11) to yield the

required result.

7.2.2 Binomial half -model, B
t

⇠ graph half -model, G
t

.

In this section we show that the probability of an (", a)-regular degree sequence (s, t) in
the graph half -model, G

t

, is asymptotically very close to the probability of (s, t) in the
binomial half -model, B

t

.

This proceeds by a direct proof which compares results for the probability of (m + n)-
tuples (s, t) in the binomial half -model, B

t

, to results for the probability of (", a)-regular
degree sequences (s, t) in the graph half -model, G

t

.

Theorem 7.2. Let G
t

= G
t

(m, n) be as in Definition 1.8 and B
t

= B
t

(m, n) be as in
Definition 7.5. Fix a non-pathological degree sequence (s(m, n), t(m, n)) 2 Im,n,t. Then
as m, n!1 subject to Conditions 6.1,

P
G

t

�

s, t
�

= P
B

t

�

s, t
��

1 + O(n�b)
�

.

Proof. We first calculate the probability of a fixed non-pathological degree sequence (s, t) in
the graph half -model, G

t

. From Definition 1.8 of the graph half -model, G
t

we have
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P
G

t

(s, t) := P
G

t

(H : the degree sequence of H is (s, t)).

Hence P
G

t

(s, t) can be calculated by taking the number of bipartite graphs with degree
sequence (s, t) and dividing by the total number of labelled bipartite graphs on (m, n)
vertices with black degree sequence t. There are

Q

k

�

m
tk

�

graphs on (m, n) vertices with

black degree sequence t

1. So we have

P
G

t

(s, t) :=

 

n
Y

k=1

✓

m

tk

◆

!

�1

|B(s, t)|. (7.13)

By Corollary 2.10 from [GM09], for acceptable for a, m and n values of the n-tuple t, and
non-(a, b,m, n, ")-pathological degree sequences, (s, t), we have an approximate count for
the number of graphs with that degree sequence, i.e. an approximate value of |B(s, t)|.
We substitute this value for |B(s, t)| in (7.13) to yield,

P
G

t

(s, t) =

 

✓

mn

M

◆ n
Y

k=1

✓

m

tk

◆

!

�1 m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

exp(O(n�b))

=

✓

mn

M

◆

�1

m
Y

j=1

✓

n

sj

◆

exp(O(n�b)). (7.14)

The form of the right-hand side is very similar to that for the probability of an (m + n)-
tuple (s, t) in the binomial half -model, B

t

. In particular by Lemma 7.6, P
BM (s, t) =

�

mn
M

�

�1

Qm
j=1

�

n
Sj

�

. In light of this we may substitute P
B

t

(s, t) into the equation (7.14)
above to give the required result.

1To see this note the following. Fix a black vertex vk. There are tk edges incident with this vertex.
Hence of the m white vertices, there are edge connecting vk to any tk distinct white vertices. So, there
are

�m
tk

�

possible arrangements for the edges incident with vk. Now, note the edges incident with one
black vertex are disjoint from the edges incident with any other black vertex. Hence the total number of
labelled bipartite graphs with black degree sequence t is the product:

Qn
k=1

�m
tk

�

.
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7.2.3 Binomial p-model, Bp.

Given an (m + n)-tuple (s, t) we will calculate the probability of (s, t) in the binomial
p-model, Bp but first we need the following somewhat technical lemma.

Lemma 7.3. Let 0 < a < 1/2 and suppose that pq > 1

log n
. Then,

n
X

i=1

✓

n

i

◆

piqn�i =
1

2
p

⇡npq

⇣

1 + O
�

n�1/2+"
�

⌘

+ O(e�n"
)

Corollary 7.4. Let 0 < a < 1/2 and suppose that p is acceptable for a, m and n. Then,

P
Ip

�

X

j

Sj =
X

k

Tk

�

=
1

2
p

⇡pqmn

�

1 + O(n�1)
�

+ O(e�n"
)

Proof. Each Sj is binomially distributed in Ip with parameters (n, p). Thus
Pm

j=1

Sj is
binomially distributed with parameters (mn, p). Similarly,

Pn
k=1

Tk is also binomially
distributed in Ip with parameters (mn, p).

Thus we have,

P
Ip

�

X

j

Sj =
X

k

Tk

�

=
mn
X

i=1

✓

mn

i

◆

piqmn�i.

Hence it is su�cient to prove that,

mn
X

i=1

✓

mn

i

◆

piqmn�i =
1

2
p

⇡pqmn

�

1 + O(n�1)
�

+ O(e�n"
)

and so the result follows by Lemma 7.3

Lemma 7.5. Fix (s, t) 2 Im,n and set M =
P

j sj. Then let Bp = Bp(m, n) be as in
Definition 7.2 and BM = BM(m, n,M) be as in Definition 7.3. Then as m, n ! 1
subject to Conditions 4.1,

P
Bp(s, t) =

m
Y

j=1

✓

n

sj

◆ n
Y

k=1

✓

m

tk

◆

p2Mq2mn�2M2
p

⇡pqmn
�

1 + O(n�1/2 ln2 n)
�

.

Proof. By Bayes law,

P
Bp(s, t) = P

Bp

⇣

X

j

Sj = M
⌘

P
Bp

⇣

(s, t) |
X

j

Sj =
X

k

Tk = M
⌘

.
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Then,

P
Bp(s, t) = P

Ip

⇣

X

j

Sj =
X

k

Tk = M |
X

j

Sj =
X

k

Tk

⌘

P
BM (s, t)

=
P
Ip

�

P

j Sj =
P

k Tk = M &
P

j Sj =
P

k Tk

�

P
Ip(

P

j Sj =
P

k Tk)
P
BM (s, t)

where the first line follows by the definitions of Bp and BM and second line follows again
by Bayes Law. Observe now that the two statements,

X

j

Sj =
X

k

Tk = M &
X

j

Sj =
X

k

Tk

and
X

j

Sj = M &
X

k

Tk = M

describe the same event. Also recall that in the Ip model, the Sj’s and the Tk’s are
independent. Hence,

P
Bp(s, t) =

1

P
Ip(

P

j Sj =
P

k Tk)
P
Ip

�

X

j

Sj = M
�

P
Ip

�

X

k

Tk = M
�

P
BM (s, t). (7.15)

The values of each of the terms on the right hand side of (7.15) are known. The quantities,
P
Ip

�

P

j Sj = M
�

and P
Ip

�

P

k Tk = M
�

follow straight from Definition 7.1 of the Ip

model. The calculations for P
BM (s, t) appear in Lemma 7.4. Substitute these values into

(7.15) to yield,

P
Bp(s, t) =

1

P
Ip

⇣

P

j Sj =
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k Tk

⌘
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.

Lemma 7.4 provides an approximation for P
Ip(

P

j Sj =
P

k Tk). Hence we now have,

P
Bp(s, t) = 2

p
⇡pqmn

�

pMqmn�M
�

2
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Y

j=1
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n

sj

◆ n
Y
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�

1 + O(n�1/2 ln2 n), (7.16)

which completes the proof.

By Theorem 4.9 we have a formula to enumerate all bipartite graphs with any given non-
pathological degree sequence. We use this below to calculate the asymptotic probability
of a graph having degree sequence (s, t).
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Lemma 7.6. Fix a, b 2 R+ and " > 0 such that 0 < a + b < 1

2

. Let Gp = Gp(m, n) be
as in Definition 1.6. Fix non-(a, b,m, n, ")-pathological (s, t) 2 Im,n. Then as m, n!1
subject to Conditions 4.1,

P
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1 + O(n�b)
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.

Proof. By Bayes law and by the definitions of Gp and GM we have,

P
Gp(s, t) = P

Gp

�

X

j

Sj = M
�

P
Gp

�

(s, t) |
X

j

Sj = M
�

= P
Gp

�

X

j

Sj = M
⌘

P
GM

�

s, t
�

.

Note the probability that a random graph in Gp has M edges is
�

mn
M

�

pMqmn�M . Also, recall
that by line (7.10) we have a formula for P

GM

�

s, t
�

in terms of the number of bipartite
graphs on (m, n) vertices, |B(s, t)|. Thus,

P
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�

,

where the second line follows by the result of Greenhill and Mckay, Corollary 2.10.
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7.2.4 Integrated binomial model, Vp ⇠ graph p-model Gp.

The binomial integrated -model, Vp is defined in terms of the binomial p-model, BM . We
construct Vp as a convolution of the binomial p-model, Bp, with a normal distribution, Kp.

Currently the binomial p-model, Bp, is defined only for p 2 [0, 1], so we let P
Bp(s, t) :=

0, 8p /2 [0, 1]. In the definition below we normalise the probability space by dividing
through by V (p).

Definition 7.7. The binomial integrated-model Vp = Vp(m, n, p) has support In,m.

Let Kp =
�

mn
⇡pq

�

1/2

exp
�

�mn
pq

(p� p0)2

�

and V (p) =
R

1

0

Kp(p0)dp0. Then define,

P
Vp(s, t) :=

1

V (p)

Z

1

�1

Kp(p
0)P

Bp0 (s, t)dp0.

In this section we will calculate the probability of a given degree sequence (s, t) in the
model Vp and show that this agrees very closely with the probability of this degree sequence
occurring in our random graph p-model, Gp. This result will rely on the following two
technical lemmas.

Lemma 7.8. Let y := M�pmn
p

pqmn
and assume that |y| < n4". Then as m, n ! 1 subject to

p acceptable for a, m and n,

✓

pMqmn�M
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mn
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◆◆

�1

=
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2⇡pqmn exp
�y2
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+ O
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(mn)�1/2+"
��

Lemma 7.9. Fix " > 0. Let y = M�pmn
p

pqmn
and � = p� p0. Write q = 1� p and q0 = 1� p0.

Assume |y| < n4". Then as m, n!1 subject to p acceptable for a, m and n,
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1

�1

�p0
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�

2M+1/2

�q0
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�

2mn�2M+1/2
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� mn
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⌘

d� =

r

⇡pq

2mn
exp

⇣y2

2

⌘⇣

1 + O(n�1/2+12")
⌘

We defer the proof of both Lemma 7.8 and 7.9 to Section 9.1 of the Appendix. Assuming
Lemmas 7.8 and 7.9 we are now in a position to show that for non-pathological (s, t),
P
Vp(s, t) is a good asymptotic approximation for P

Gp(s, t).

Theorem 7.10. Fix a, b 2 R+ and " < "
0

(a, b) such that a + b < 1

2

, a = a0 + " < 1

2

and b + 17" < 1. Let Gp = Gp(m, n) be as in Definition 1.6 and Vp = Vp(m, n) be as in
Definition 7.7. Let (s, t) 2 In,m,M for some 0  M  mn. Suppose also that (s, t) is
non-(a, b,m, n, ")-pathological and satisfies M�pmn

p

pqmn
< n5".

Then as m, n!1 subject to Conditions 4.1,

P
Gp(s, t) = P

Vp(s, t)
�

1 + O(n�b)
�

.
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Proof.
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(7.20)

The first line, (7.17), follows by Definition 7.7 of the binomial integrated -model, Vp. Then
(7.18) follows by Lemma 7.5. Line (7.19) follows by rearranging and cancelling in (7.18).
By Lemma 7.6 and because (s, t) is non-pathological we then get (7.20).

Let y = M�pmn
p

pqmn
and then by assumption |y| < n4". Now (7.21) follows by Lemma 7.9

(also note that the O(n�b) error term is larger). Hence,
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P
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(mn)�1/2+"
�

⌘⇣

1 + O(n�1/2 ln2 n)
⌘⇣

1 + O(n�b)
⌘

(7.23)

= P
Gp(s, t)

⇣

1 + O(n�b)
⌘

(7.24)

Line (7.22) follows by Lemma 7.8. Rearrange to get (7.23). Then because O(n�b) is the
largest error term we have (7.24) and we are done.
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7.3 Implications

We will show that the expectation of a random variable X : Im,n ! R in any one of the
random bipartite graph models can be asymptotically approximated by the expectation
of the same event in the corresponding binomial model. This is done for the graph edge-
model, GM in Theorem 7.4 and the graph p-model, Gp in Theorem 7.5. The results in
Theorems 7.4 and 7.5 form the bipartite analogue of Theorem 2.6 in [MW97], our Theo-
rem 2.6.

First we need some lemmas which bound the probability of pathological (m + n)-tuples
in each of the binomial models. We begin by considering the binomial p-model, Bp.

Lemma 7.1. Fix " > 0 and 0 < a < 1

2

such that a + " < 1

2

and b + 17" < 1. Let
Bp = Bp(m, n) be as in Definition 7.2. Then as m, n!1 subject to Conditions 4.1,

P
Bp

�

(S, T ) is (a, b,m, n, ")-pathological
�

 e�n11"/10
.

Proof. Many of the bounds we will show in Bp will follow directly from results in Gp.
This is because, considered alone, the degrees of the white vertices in Gp are binomi-
ally distributed with parameters (n, p). Also the degrees of uj and uj0 are independent
80  j, j0  k (except j = j0). Thus the distribution of the degree of uj in Gp is the same
as that for the random variables Sj in Bp. (The dependence between the degrees of the
vertices uj and vk in Gp is di↵erent to the dependence between Sj and Tk is di↵erent in Bp.)

Hence by Lemma 4.3,

P
Bp

�

|Sj � S| � n1/2+2"/5

�

= P
Gp

�

|Sj � S| � n1/2+2"/5

�

 e�n4"/3
,

P
Bp

�

|Tk � T | � n1/2+10"/11

�

= P
Gp

�

|Tk � T | � n1/2+10"/11

�

 e�n5"/4
.

Thus,

P
Bp

�

8j, k, Tk � T, Sj � S uniformly o(n1/2+")
�

� 1� P
Gp

�

|Sj � S| � n1/2+2"/5

�

� P
Gp

�

|Tk � T | � n1/2+10"/11

�

� 1� e�n6"/5
. (7.25)

Define � = 1

mn

P

j Sj. Then the distribution of � in Bp and the edge density � in Gp are
the same.

Thus by Lemma 4.7,

P
Bp

�

� is acceptable for a, m and n
�

= P
Gp

�

� is acceptable for a, m and n
�

� 1� e�n3"/2
.

(7.26)
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We can apply the same comparisons with the Gp method to deduce (by Lemmas 4.6 and
4.8 respectively),

P
Bp

 

�

�

�

1�
P

j(Sj � S)2

�(1� �)mn

�

�

�

� n�1/2+8"

!

 e�n6"/5

and P
Bp

 

�

�

�

1�
P

k(Tk � T )2

�(1� �)mn

�

�

�

� n�1/2+9"

!

 e�n8"/7
.

And thus,

P
Bp

 

�

�

�

�

⇣

1�
P

j(Sj � S)2

�(1� �)mn

⌘⇣

1�
P

k(Tk � T )2

�(1� �)mn

⌘

�

�

�

�

� n�1+17"

!

 e�n9"/8
. (7.27)

Hence by (7.25),(7.26) and (7.27),

P
Bp

�

(S, T ) is (a, b,m, n, ")-pathological
�

 e�n6"/5
+ e�n3"/2

+ e�n9"/8  e�n11"/10
.

Next we work in the binomial edge-model, BM , and bound the probability that a random
(m + n)-tuple in BM will be pathological.

Corollary 7.2. Fix " > 0 and 0 < a < 1

2

such that a + " < 1

2

and b + 17" < 1. Let
BM = BM(m, n) be as in Definition 7.3. Then as m, n!1 subject to Conditions 5.1,

P
BM

�

(S, T ) is (a, b,m, n, ")-pathological
�

 e�n12"/11
.

Proof. Similar to Lemma 5.1 we can conclude that for any event A ⇢ Im,n,M ,

P
BM (A)  mnP

B

p= M
mn

(A). (7.28)

Observe that as we have assumed Conditions 5.1, M
mn

is acceptable for a, m and n. Thus
our choice of p = M

mn
implies that p is acceptable for a, m and n and we have Conditions 4.1.

Let P ⇢ Im,n,M be the set of (a, b,m, n, ")-pathological (m + n)-tuples in Im,n,M . By

Lemma 7.1, P
B

p= M
mn

�

P
�

e�n11"/10
. Now let the event A in (7.28) be our set P and this

yields the asserted result.

Lastly we consider the binomial integrated -model, Vp and bound the probability of the
set of pathological (m + n)-tuples in Vp.
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Corollary 7.3. Fix " > 0 and 0 < a < 1

2

such that a + " < 1

2

and b + 17" < 1. Let
Vp = Vp(m, n) be as in Definition 7.7. Then as m, n!1 subject to Conditions 4.1,

P
BM

�

(S, T ) is (a, b,m, n, ")-pathological
�

 e�n"
.

Proof. Let P ⇢ Im,n be the subset of (a, b,m, n, ")-pathological (m+n)-tuples in Im,n. By
the definition of Vp and the change of variables � = p0 � p we get,

V (p).P
Vp

�

P
�

=

r

mn

⇡pq

Z

1

0

exp
⇣�mn

pq
(p0 � p)2

⌘

P
Bp0

�

P
�

dp0

=

r

mn

⇡pq

Z

[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d�

+

r

mn

⇡pq

Z

[�p, q]�[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d� (7.29)

We will bound both terms on the right hand side of (7.29) seperately. The integral over
the interval [�" ln n, " ln n] is bounded first.

Let a0 = a + " and note that a0 < 1/2. Now observe that by Definition 2.5 of acceptable
that if p is acceptable for a, m and n then p + n"�1 is acceptable for a0, m and n. Hence
for p0 2 [p� n"�1, p + n"�1], by Lemma 7.1, P

Bp0

�

P
�

 e�n11"/10
. Thus,

Z

[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d� < e�n11"/10

Z

[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

d�.

We also note that

Z

[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

d� 
Z

1

0

exp
⇣�mn

pq
�2

⌘

d�.

Hence,
r

mn

⇡pq

Z

[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d�  e�n12"/11
. (7.30)

We now bound the value of integral on the intervals [�p,� n"�1] and [n"�1, q] (which
we denote [�p, q] � [�n"�1, n"�1] ). Observe that because Bp is a probability space,
8p0 2 [0, 1], P

Bp0

�

P
�

 1 and by definition 8p0 /2 [0, 1], P
Bp0

�

P
�

= 0.
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Hence by Lemma 9.6 we can bound the ‘tails’ of the integral as follows,

Z

[�p, q]�[�n"�1, n"�1
]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d�

= O

✓

1

u
exp

⇣�u2

2

⌘

◆

Z

[�p, q]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d�

where u =

r

pq

2mn
n1�" > n2"/3.

And thus we have,

r

mn

⇡pq

Z

[�p, p]�[�" ln n, " ln n]

exp
⇣�mn

pq
�2

⌘

P
Bp0

�

P
�

d�  e�n4"/3
. (7.31)

The asserted result now follows by (7.30) and (7.31).

We are now ready to prove the asymptotic expectation of any random variable in the graph
edge-model, GM can be approximated by its expectation in the binomial edge-model, BM .

Theorem 7.4. Fix " > 0 and 0 < a < 1

2

such that a + " < 1

2

and b + 17" < 1. Let
GM = GM(m, n) be as in Definition 1.7 and let BM = BM(m, n) be as in Definition 7.2.

Let X : Im,n,M ! R be any random variable.

Then as m, n!1 subject to Conditions 5.1,

E
GM

�

X
�

� E
GM

�

X
�

= + O(n�b)E
GM

�

|X|
�

+ max
x2Im,n

|X(x)|.O
�

e�n10"/11�

Proof. Let P ⇢ Im,n,M be the set of (a, b,m, n, ")-pathological(m+n)-tuples in Im,n,M . By
the definition of expectation,

E
GM

�

X
�

=
X

x2P c

P
GM (x)X(x) +

X

x2P

P
GM (x)X(x). (7.32)
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For non-pathological (s, t), P
GM (s, t) is approximately P

BM (s, t). Hence by Theorem 7.1,

E
GM

�

X
�

=
X

x2P c

P
BM (x)

�

1 + O(n�b)
�

X(x) + max
x2Im,n

|X(x)|.O(P
GM (P )) (7.33)

=
X

x2Im,n

P
BM (x)

�

1 + O(n�b)
�

X(x)

+ max
x2Im,n

|X(x)|.O
⇣

P
BM (P )

�

1 + O(n�b)) + P
GM (P )

⌘

. (7.34)

Consider the first term on the right hand side of (7.34).
X

x2Im,n

P
BM (x)

�

1 + O(n�b)
�

X(x)

=
X

x2Im,n

P
BM (x)X(x) +

X

x2Im,n

P
BM (x)O(n�b)X(x) (7.35)

=E
BM

�

X
�

+ O(n�b)
X

x2Im,n

P
BM (x)|X(x)| (7.36)

=E
BM

�

X
�

+ O(n�b)E
BM

�

|X|
�

(7.37)

Here, line (7.35) follows by simple rearrangement. Then by the definition of expectation
and the uniformity of the error term O(n�b) we get (7.36). Then (7.37) follows again by
the definition of expectation.

By Theorem 5.2 and Corollary 7.2 we have P
GM (P )  e�n11"/12

and P
BM (P )  e�n12"/11

respectively. Hence by (7.34) and (7.37),

E
GM

�

X
�

=E
BM

�

X
�

+ O(n�b)E
BM

�

|X|
�

+ max
x2Im,n

|X(x)|.O
�

e�n10"/11�

and we have our result.

A similar result holds which relates asymptotic expectations in Gp and Vp.

Theorem 7.5. Fix " > 0 and 0 < a < 1

2

such that a + " < 1

2

and b + 17" < 1. Let
Gp = Gp(m, n) be as in Definition 1.6 and let Vp = Vp(m, n) be as in Definition 7.7.

Let X : Im,n ! R be any random variable.

Then as m, n!1 subject to Conditions 4.1,

E
Gp

�

X
�

� E
Vp

�

X
�

= O(n�b)E
Vp

�

|X|
�

+ max
x2Im,n

|X(x)|O(e�n9"/10
).
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Proof. We begin with the following observations which will be necessary for the proof. Let

y =
P

j Sj�pmn
p

pqmn
and consider the likely magnitude of |y| in Gp. Note that y =

q

mn
pq

�

��� p
�

�.

Hence by Lemma 4.2, P
Gp(|y| > n4")  e�n2"

. (Note that as Lemma 4.2 only concerns the

random variables Sj and p (and not Tk’s) we also have that P
Bp(|y| > n4")  e�n2"

which
implies P

Vp(|y| > n4")  e�n"
in a similar fashion to Corollary 7.3.) The remainder of the

proof proceeds in the same way as the proof of Theorem 7.4.

Let P ⇢ Im,n be the set of (m+n)-tuples in Im,n that are either (a, b,m, n, ")-pathological
or for which |y| > 4". By the definition of expectation,

E
Gp

�

X
�

=
X

x2P c

P
Gp(x)X(x) +

X

x2P

P
Gp(x)X(x). (7.38)

By Theorem 7.10, for non-(a, b,m, n, ")-pathological (s, t), the values P
Gp(s, t) and P

Vp(s, t)
are asymptotically very close. Hence,

E
Gp

�

X
�

=
X

x2P c

P
Bp(x)

�

1 + O(n�b)
�

X(x) + max
x2Im,n

|X(x)|.O(P
Gp(P )) (7.39)

Similarly to the proof of Theorem 7.4, line (7.39) implies,

E
Gp

�

X
�

� E
Vp

�

X
�

= O(n�b)E
Vp

�

|X|
�

+ max
x2Im,n

|X(x)|.O
⇣

�

1 + O(n�b)
�

P
Bp

�

P
�

+ O(P
Gp(P ))

⌘

(7.40)

By Theorem 4.9 and Corollary 7.3 we have P
Gp(P )  e�n10"/11

+ e�n2"
and P

Vp(P ) 
e�n"

+ e�n2"
respectively. Hence our result follows from (7.40).

Consider, any event A ⇢ Im,n and the random variable IA defined to be the indicator
function of A. Then E(IA) = P(A). Hence Theorems 7.4 and 7.5 yield the following
corollaries.

Corollary 7.6. Under the same conditions and assumptions as Theorem 7.4, let A ⇢
Im,n,M then,

P
GM

�

A
�

� P
BM

�

A
�

= O(n�b)P
BM

�

|A|
�

+ O(e�n10"/11
).

Corollary 7.7. Under the same conditions and assumptions as Theorem 7.5, let A ⇢ Im,n

then,

P
Gp

�

A
�

� P
Vp

�

A
�

= O(n�b)P
Vp

�

|A|
�

+ O(e�n9"/10
).
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We have shown that degree sequences in random bipartite graph models can be approxi-
mated by independent binomials subject to certain constraints. The independence of the
random variables on which our binomial models are based suggests that the degrees of the
white vertices are perhaps in some sense independent of the degrees of the black vertices.
We make this idea precise in the following theorem concerning the graph edge-model, GM .

Theorem 7.8. Fix a, b 2 R+ such that 0 < a + b < 1

2

. Then fix " = "
0

(a, b) > 0. Let
GM = GM(m, n) be as in Definition 1.7 and BM = BM(m, n) be as in Definition 7.3.

For 1  j  m, let Sj be the random variable that returns the degree of the white vertex
uj and for 1  k  n, let Tk be the random variable that returns the degree of the black
vertex uj.

Let E
S

be an event defined in terms of the random variables S
1

, . . . , Sm and E
T

be an
event defined in terms of the random variables T

1

, . . . , Tn.

Then as m, n!1 subject to Conditions 5.1,

P
GM

�

E
S

and E
T

�

=
�

1 + O(n�b)
�

P
GM

�

E
S

�

P
GM

�

E
T

�

+ O(e�n10"/11
).

Proof.

P
GM

�

E
S

and E
T

�

=
�

1 + O(n�b)
�

P
BM

�

E
S

and E
T

�

+ O(e�n10"/11
) (7.41)

=
�

1 + O(n�b)
�

P
BM (E

S

)P
BM (E

T

) + O(e�n10"/11
) (7.42)

=
�

1 + O(n�b)
�

P
GM (E

S

)P
GM (E

T

) + O(e�n10"/11
) (7.43)

We justify the calculation line by line. Define the random variable IE
S

&E
T

to be the indica-
tor function for the event E

S

&E
S

. Then the expectation, E
GM (IE

S

&E
T

) = P
GM (E

S

&E
T

).
Thus (7.41), follows by Theorem 7.4. Line (7.42) follows by the independence of S and
T in the binomial edge-model, BM . Line (7.43) then follows by reapplying Theorem 7.4
to (7.42). And thus we have our result.

We also observe that such a theorem could not hold in the graph p-model, Gp. Recall
that S (resp. T ) is the random variable that returns the average degree of the white
(respectively black) vertices.

Now fix an integer M , where 0  M  mn and set E
S

= {S |
P

j Sj = M} and
E

T

= {T |
P

k Tk = M}. Then E
S

= 1

m
M = n

m
E

T

. Hence for the Gp model we have a
counter-example which shows there is no result in Gp which is analogous result to Theorem
7.8 in GM .
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Chapter 8

Calculations on the likelihood of
pathological degree sequences.

8.1 Generating functions for graph p-model, Gp.

8.1.1 Preliminary expectations

The aim of this section is to provide some calculations needed to show that pathological
degree sequences are rare in the graph p-model, Gp. We calculate some preliminary ex-
pectations on our random variables for the white vertices’ degrees: s

1

, . . . , sm.

Fix a white vertex uj and consider the degree of that vertex, Sj. By definition of the
graph p-model, Gp, the probability that there is an edge between uj and any black vertex
vk is precisely p. As there are n black vertices, the random variable Sj is the standard
binomial in (n, p). Hence we can write probability generating function, A

1

(x), for Sj in
Gp.

A
1

(x) = (px + q)n

This generating function will allow us to calculate the expectation of Sj and of S2

j . By
the theory of generating functions explained in Section 3.3 this requires the evaluation of
some di↵erential operators on the function A

1

(x).
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8.1.2 Di↵erentials of A1, (Gp).

(xD)A
1

= xpn(px + q)n�1

�

(xD)A
1

�

x=1

= pn (8.1)

(xD)2A
1

= x2D2A
1

+ xDA
1

= x2p2n(n� 1)(px + q)n�2 + xpn(px + q)n�1

�

(xD)2A
1

�

x=1

= p2n(n� 1) + pn = pn(1� p) + p2n2 = pnq + p2n2 (8.2)

We can now calculate the following expectations of the functions on the degrees of the
vertices. Note these hold for all j = 1, . . . ,m. The first two lines, the results on A

1

, are
from the lines (8.1) and (8.2).

E[Sj] =
� d

dx
A

1

(x)
�

x=1

=
�

np(px + q)n�1

�

x=1

= np

E[S2

j ] =
� d

dx
x

d

dx
A

1

(x)
�

x=1

=
� d

dx
xnp(px + q)n�1

�

x=1

= np + n(n� 1)p2

Thus by linearity of expectation,

E[
X

j

S2

j ] =
X

j

E[S2

j ] = mnp + mn(n� 1)p2

E[
X

j

Sj] =
X

j

E[Sj] = mnp

8.1.3 Expectation of
P

j(Sj � S)2

E[
X

j

(Sj � S)2] = E[
X

j

S2

j ]� 2E[S
X

j

Sj] + mE[S2]

= E[
X

j

S2

j ]�
2

m
E[(

X

j

Sj)
2] +

m

m2

E[(
X

j

Sj)
2]

= E[
X

j

S2

j ]�
1

m
E[(

X

j

Sj)
2]

= mnp + mn(n� 1)p2 � 1

m
(mn(mn� 1)p2 + mnp)

= mnpq � npq (8.3)
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8.2. Generating functions for graph half -model, G
t

.

8.1.4 Expectation of
P

j(Sj � np)2

E[
X

j

(Sj � np)2] = E[S2

j ]� 2E[np
X

j

Sj] + mn2p2

= mnp + mn(n� 1)p2 � 2np(mnp) + mn2p2

= mnpq (8.4)

8.2 Generating functions for graph half -model, G
t

.

8.2.1 Di↵erentials of B, (G
t

)

We work in the random graph model G
t

. In this model the degrees of the black vertices,
i.e. t, are given, and all bipartite graphs with this black degree sequence are equally likely.
This section provides some calculations needed to show that pathological degree sequences
are rare in the graph half -model, G

t

.

Recall that B(x) is the probability generating function for Sj, the degree of vertex uj in
random graph model G

t

. Similar to the previous graph model Gp, we find the expectation
of
P

j(Sj � S)2 in G
t

. For this purpose we calculate up to the second order derivative of
B(x).

B =
n
Y

k=1

� tk
m

x +
m� tk

m

�

DB =
1

m

�

n
X

h=1

th
Y

k 6=h

� tk
m

x +
m� tk

m

��

�

DB(x)
�

x=1

= m�1

X

k

tk = �n (8.5)

D2B(x) =
1

m2

�

X

h 6=l

thtl
Y

k/2{h,l}

� tk
m

x +
m� tk

m

��

�

D2B(x)
�

x=1

= m�2

X

h 6=l

thtl = m�2

�

(
X

k

tk)
2 �

X

k

t2k
�

= �2n2 �m�2

X

k

t2k

�

(xD)2B
�

x=1

=
�

x2D2B + xDB
�

x=1

= �n + �2n2 �m�2

X

k

t2k (8.6)
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Chapter 8. Calculations on pathological degree sequences.

8.3 Di↵erential operators and symbolic D notation

This section is not strictly necessary for the thesis but is included here for the interested
reader. Let A(x) be the probability generating function for some random variable X.
Then the calculation of

�

(xD)nA(x)
�

x=1

for large n 2 N , i.e. E(Xn) can be streamlined
by noting the following relation.

DxiD = ixi�1D + xiD2

(xD)2 = xDxD = x(xD2 + D) = x2D2 + xD

(xD)3 = xD(xD + x2D) = xD + 3x2D2 + x3D3

(xD)4 = xD(xD + 3x2D2 + x3D3) = xD + 7x2D2 + 6x3D3 + x4D4

(xD)5 = xD(xD + 7x2D2 + 6x3D3 + x4D4) = xD + 15x2D2 + 25x3D3 + 10x4D4 + x5D5

The coe�cients above form the following pattern.

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

These are the Stirling numbers of the second kind and are defined recursively by,
✓

a

a

◆

=

✓

a

0

◆

= 1,

✓

i

j

◆

=

✓

i� 1

j � 1

◆

+ (j + 1)

✓

i� 1

j � 1

◆

.
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Chapter 9

Results needed for Chapter 7.

Lemmas 7.8 and 7.9 form part of our proof that non-pathological degree sequences have
similar probabilities under the Gp and Vp models. We prove these results first.

The other result we will need to prove is Lemma 7.3 which is used to calculate the asymp-
totic probability of choosing a particular (m+n)-tuple (s, t) in the binomial p-model, Bp.
We prove this result in Section 9.2.

9.1 Proof of Lemmas 7.8 and 7.9.

Asymptotic combinatorial results Some preliminary results from asymptotic com-
binatorics are needed to show Lemmas 7.8 and 7.9. We state and sometimes re-develop
these results below for the interested reader. The first results are stated without proof.
Stirling’s approximation is often used to bound factorials. A reference can be found on
line (4.2) of [Odl95, p.1076].

Lemma 9.1 (Stirling’s approximation).

n! =
p

2⇡n
⇣n

e

⌘n
✓

1 + O
⇣ 1

n

⌘

◆

.

The next lemma concerns rising and falling factorial approximations. This is an often
used result but we give a proof here for completeness.

Lemma 9.2. Let k 2 R and assume | k
n
| < c for some c < 1. Then,

Note that we can now write for any k 2 R:
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Chapter 9. Results needed for Chapter 7.

1.
(n + k)!

n! nk
= exp

� k2

2n
+ O

�k

n
+

k3

n2

��

2.
(n� k)!

n! n�k
= exp

� k2

2n
+ O

�k

n
+

k3

n2

��

Proof. (of 1.) We use the trick of writing x = eln x and then applying the series expansion
for natural log.

(n + k)!

n! nk
=

k
Y

i=1

⇣

1 +
i

n

⌘

= exp

✓ k
X

i=1

ln
⇣

1 +
i

n

⌘

◆

= exp

✓ k
X

i=1

i

n
+ O

⇣ i2

n2

⌘

◆

= exp

✓

k2

2n
+ O

⇣k

n
+

k3

n2

⌘

◆

.

Proof. (of 2.) This proceeds similarly to the proof of part (1).

Proof of Lemma 7.8. We will prove Lemma 7.8 first and proceed by a series of pre-
liminary lemmas.

Lemma 9.3. Fix 0 < a < 1

2

. Suppose p is acceptable for a, m and n and write q = 1�p.
Then,

(ppnqqn)�1

(pn)!(qn)!

n!
=
p

2⇡pqn

✓

1 + O
⇣ ln n

n

⌘

◆

Proof. In the calculations below, (9.1) follows by Stirling’s approximation (Lemma 9.1).
Many terms in (9.1) then cancel to give us (9.2) as required.

(ppnqqn)�1

(pn)!(qn)!

n!

= (ppnqqn)�1

p
2⇡

r

pnqn

n
exp

�

n� pn� qn
�(pn)pn(qn)qn

nn

✓

1 + O
⇣ 1

pn
+

1

qn

⌘

◆

(9.1)

=
p

2⇡pqn
⇣

1 + O

✓

ln n

n

◆

⌘

. (9.2)
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9.1. Proof of Lemmas 7.8 and 7.9.

Lemma 9.4. Define y := M�pmn
p

pqmn
and assume that |y| < n". Fix 0 < a < 1

2

. Write

q = 1� p. Then as m, n!1 subject to p acceptable for a, m and n,

(pmn + y
p

pqmn)!(qmn� y
p

pqmn)!

(pmn)!(qmn)!py
p

pqmnq�y
p

pqmn
= exp

✓

y2

2
+ O

�

(mn)�1/2+4"
�

◆

Proof. Note it is su�cient to prove the following two approximations.

(pmn + y
p

pqmn)!

(pmn)!(pmn)y
p

pqmn
= exp

✓

qy2

2
+ O

�

(mn)�1/2+4"
�

◆

(9.3)

(qmn� y
p

pqmn)!

(qmn)!(qmn)�y
p

pqmn
= exp

✓

py2

2
+ O

�

(mn)�1/2+4"
�

◆

. (9.4)

In the proofs of both of these results we use the approximations developed for rising and
falling factorials in Lemma 9.2. The last line in each of the calculations below follows by
our assumption that |y| < n".

We begin with the proof of (9.3).

(pmn + y
p

pqmn)!

(pmn)!(pmn)y
p

pqmn
= exp

�y2pqmn

2pmn
+ O

�y
p

pqmn

pmn
+

y3(pqmn)3/2

(pmn)2

��

= exp
�y2q

2
+ O

� y
p

q
p

pmn
+

y3q3/2

p
pmn

��

= exp
�y2q

2
+ O

�

(mn)�1/2+4"
��

The proof of (9.4) proceeds similarly.

We are now in a position to prove Lemma 7.8. This lemma was originally stated on p84
of this thesis but we restate it below for convenience.

Lemma 7.8. We define y := M�pmn
p

pqmn
and assume that |y| < n". Then as m, n ! 1

subject to p acceptable for a, m and n,

✓

pMqmn�M

✓

mn

M

◆◆

�1

=
p

2⇡pqmn exp

✓

y2

2
+ O

�

(mn)�1/2+"
�

◆

.
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Chapter 9. Results needed for Chapter 7.

Proof. Observe that by the definition of y,

M = y
p

pqmn + pmn and M �mn = y
p

pqmn� qmn.

Hence by expansion and some rearrangement,

✓

pMqmn�M

✓

mn

M

◆◆

�1

=
(pmn)!(qmn)!

(mn)!ppmnqqmn
⇥

(pmn + y
p

pqmn)!(qmn� y
p

pqmn)!

(pmn)!(qmn)!py
p

pqmnq�y
p

pqmn

In the expression above we can approximate the two fractions on the right hand side by
Lemmas 9.3 and 9.4 respectively. This yields,

�

pMqmn�M

✓

mn

M

◆

�

�1

=
p

2⇡pqmn
�

1 + O
�

1

mn

��

exp

✓

y2

2
+ O

⇣

(mn)�1/2+"
⌘

◆

as required.

Proof of Lemma 7.9. In the first step in the proof of this result, we find an exponential

approximation to
�

p0

p

�

2M+

1
2
�

q0

q

�

2mn�2M+

1
2 .

Lemma 9.5. Fix " > 0 and set � = p� p0. Also assume |�| < n"
p

pq
mn

. Write q = 1� p
and q0 = 1� p0. Then as m, n!1 subject to Conditions 4.1,

⇣p0

p

⌘

2M+

1
2
⇣q0

q

⌘

2mn�2M+

1
2

= exp
�

(2pmn + 2y
p

pqmn + 1
2)
�1

p
� � 1

2p2 �2

��

⇥ exp
�

(2qmn� 2y
p

pqmn + 1
2)
�

� 1
q
� � 1

2q2 �2

���

1 + O(n�1+10")
�

.

Proof. Similar to the proof of 9.2 we will use the trick of writing x = eln x and then
applying the series expansion for natural log. This method is first applied to p0

p
,
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9.1. Proof of Lemmas 7.8 and 7.9.

p0

p
=1 + �

p
= exp

⇣

ln
�

1 + �
p

�

⌘

= exp
⇣

�
p
� �2

2p2 + O
��3

p3

�

⌘

Similarly,

q0

q
=1� �

q
= exp

⇣

ln
�

1 + �
q

�

⌘

= exp
⇣

� �
q
� �2

2q2 + O
��3

p3

�

⌘

.

Hence we have,
⇣p0

p

⌘

2M+

1
2
⇣q0

q

⌘

2mn�2M+

1
2

= exp
⇣

(2pmn + 2y
p

pqmn + 1
2)
�1

p
� � 1

2p2 �2

�

⌘

⇥ exp
⇣

(2qmn� 2y
p

pqmn + 1
2)
�

� 1
q
� � 1

2q2 �2

�

⌘

⇥ exp
⇣

O
�

(2qmn� 2y
p

pqmn + 1
2)�3

p3

�

⌘

. (9.5)

To bound the error term first note that by our assumptions on |�| we have,

�3

p3

<
n3"

p3

⇣

r

pq

mn

◆

3

= n3"(mn)�3/2

s

q3

p3

. (9.6)

The restrictions on m, n imply that (mn)�3/2 < n�3+4". Also by Lemma 4.5, p > 1

ln n
and

so in particular,
q

q3

p3 < (ln n)3/2. Hence by (9.6),

�3

p3

< n3"n�3+4"(ln n)3/2 < n�3+8". (9.7)

The result now follows by (9.5) and (9.7).

This Lemma appears, for example, in the preliminary theory of Bollobás’ book [Bol01].

Lemma 9.6.

1

�
p

2⇡

Z u�

�u�

exp
�

� x2/2�2

�

dx = 1 + O
⇣1

u
exp

�

� u2/2
�

⌘

In the following Corollary we put Lemma 9.6 into a more convenient form for our calcu-
lations.
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Chapter 9. Results needed for Chapter 7.

Corollary 9.7. Let u  1

p

2a
⇥min{k � b

2a
, k + b

2a
}. Then,

Z k

�k

exp
�

� a�2 + b�
�

dx =

r

⇡

a
exp

⇣ b2

4a

⌘⇣

1 + O
⇣1

u
exp

�

� u2/2
�

⌘⌘

We are now ready to prove Lemma 7.9. It is restated here for convenience.

Lemma 7.9.
Fix " > 0. Let y = M�pmn

p

pqmn
and � = p � p0. Write q = 1 � p and q0 = 1 � p0. Assume

|y| < n4". Then as m, n!1 subject to p acceptable for a, m and n,

Z

1

�1

�p0

p

�

2M+1/2

�q0

q

�

2mn�2M+1/2

exp
⇣

� mn

pq
�2

⌘

d� =

r

⇡pq

2mn
exp

⇣y2

2

⌘⇣

1 + O(n�1/2+12")
⌘

Proof. The calculations begin, we work to simplify the integral.

Z n5"

�n5"

�p0

p

�

2M+1/2

�1� p0

1� p

�

2mn�2M+1/2

exp
��mn

pq
(p� p0)2

�

d� (9.8)

=

Z �=ln n

�=� ln n

exp
��mn

pq
�2

�

exp
�

(2pmn + 2y
p

pqmn + 1
2)
�1

p
� � 1

2p2 �2

��

exp
�

(2qmn� 2y
p

pqmn + 1
2)
�

� 1
q
� � 1

2q2 �2

���

1 + O(�n�1+10")
�

(9.9)

= (1 + O(�n�1+10"))

Z �=ln n

�=� ln n

exp
�

� a�2 + b�
�

where, (9.10)

a = 1
(2pq)2 (8mnpq + 4y

p
pqmn(1� 2p) + 2p2 � 2p + 1),

b = 1
2pq

(4y
p

pqmn� (2p� 1)).

Line 9.9 follows by Lemma 9.5. This then rearranges to give line 9.10. We now find an
approximation for b2

4a
. By (9.10),
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9.2. Proof of Lemma 7.3

b2

4a
=

(4y
p

pqmn�(2p�1))2

4(8mnpq+4y
p

pqmn(1�2p)+2p2�2p+1)

=
16y2pqmn�(2p�1)8y

p
pqmn+(2p�1)2

4(8mnpq+4y
p

pqmn(1�2p)+2p2�2p+1)

=
y2

2
+

((1�2p)8y
p

pqmn(y�1)+(2p�1)2�y(2p2�2p+1)
4(8mnpq+4y

p
pqmn(1�2p)+2p2�2p+1)

thus,

b2

4a
=

y2

2
+ O((mn)�1/2+2"). (9.11)

We note also that by (9.10), a = 2mn
pq

+ O((mn)�1/2+2"). Then by Corollary 9.7 we have,

Z n5"

�n5"

�p0

p

�

2M+1/2

�1� p0
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2mn�2M+1/2
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��mn
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⇡pq

2mn
+ O((mn)�1/2+2") exp

⇣y2
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⇣

1 + O
⇣1

u
exp

�

� u2/2
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⌘⌘
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✓
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⇡pq

2mn
exp
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⌘

(1 + O(n�1+10")) + O(n�1/2+4")

◆

⇥
⇣

1 + O
⇣1

u
exp

�

� u2/2
�

⌘⌘

where, (9.12)

u =

r

pq

4mn
⇥
⇣

n5" � y + O(n�1/2+4")
⌘

> n4"

The right hand side of (9.12) then simplifies to yield,

r

⇡pq

2mn
exp

⇣y2

2

⌘

+ O
�

n�1+12"
�

and so we are done.

9.2 Proof of Lemma 7.3

We state the Lemma again for convenience and provide the proof.
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Chapter 9. Results needed for Chapter 7.

Lemma 7.3 Let 0 < a < 1/2 and suppose that pq > 1

ln n
. Then,

n
X

j=0

✓✓

n

j

◆

pjqn�j

◆

2

=
1

2
p

⇡npq

⇣

1 + O
�

n�1/2+"
�

⌘

+ O(e�n"
)

Proof. Consider the region where the greater proportion of the sum lies. The largest term
in the sum lies around j = np. Make the substitution j = np + x. and split the sum into
two components: |j � np| < n3/5 and |j � np|  n3/5.

n
X

j=0

✓✓

n

j

◆

pjqn�j

◆

2

=
X

|np�j|<n3/5

✓✓

n

j

◆

pjqn�j

◆

2

+
X

|np�j|�n3/5

✓✓

n

j

◆

pjqn�j

◆

2

We first write a general outline of how the proof will proceed, writing E1, . . . for any error
terms we pick up. We will then bound each of these errors in turn. Thus,

n
X

j=0

✓✓

n

j

◆

pjqn�j

◆

2

=
X

|np�j|<n3/5

✓✓

n

j

◆

pjqn�j

◆

2

+ E1

where E1 denotes the ‘tails’ of the sum. We can now use the Euler-Maclaurin summation
formula to approximate the central part of the sum with a truncated normal distribution.
Make the substitution x = np� j and write,

Z n

j=0

✓✓

n

j

◆

pjqn�j

◆

2

=
X

|x|<n3/5

1

2⇡npq
exp

⇣

� x2

pqn

⌘

(1 + E2) + E1.

Now, because the tails of the normal distribution are small,

n
X

j=0

✓✓

n

j

◆

pjqn�j

◆

2

= E3 +

Z

1

�1

1

2⇡npq
exp(� x2

pqn
)(1 + E2) + E1.

After integrating,

n
X

j=0

✓✓

n

j

◆

pjqn�j

◆

2

= E3 +
1

2
p

⇡npq
(1 + E2) + E1.
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9.2. Proof of Lemma 7.3

It now remains to bound E1, E2, E3 and E4. We begin by bounding E2. We calculate,
using Stirling’s approximation for factorials (Lemma 9.1), that,

✓✓

n

np + x

◆

pnp+xqnq�x

◆

2

=
n

2⇡(np + x)(nq � x)

✓
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✓
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◆

2(nq�x)

✓

1 + O

✓

ln n

n

◆◆

Where the error term follows because p is acc and thus p > 1

ln n
. Then use the trick of

writing z = eln z and using the series expansion for natural log. This yields

✓✓

n
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◆

pnp+xqnq�x

◆
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=
1

2⇡npq
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✓
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x
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)� 2(nq � x) log(1� x
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⇣

1 + O
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which simplifies to,

✓✓
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◆
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◆

2

=
1

2⇡npq
exp

✓

�x2
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◆

�

1 + O
�

n�1/5

��

. (9.13)

(9.14)

Where the bound above is uniform. Thus the term,

X

|np�j|<n3/5

✓✓

n

j

◆

pjqn�j

◆

2

is the sum of a Gaussian. We now approximate this sum with an integral. To do this
we apply the Euler-Maclaurin summation (for the definition of the terms B

2

, R
2

etc. see
[Odl95, p.1090]). The Euler-Maclaurin result means the summation over a function g can
be approximated by an integral as follows,

b
X

k=a

g(k) =

Z b

a

g(x)dx +
B

2

2
(g0(b)� g0(a)) +

1

2
(g(a) + g(b)) + R

2

.

In our case the error term will be R
2

, so we calculate the magnitude of this,
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|R
2

|  |B
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|
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Hence we now have,
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npq

◆

dx + O(e�n"
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And so E2 = O(n�1/2+"). One of our intermediate results to bound E2 can be used to
bound E1.

The error E1 corresponds to the tails of a binomial sum. As we know that the binomal
distribution always decreases away from its mean, then we can bound E1 by n times its
maximum height.

E1 =

�

�

�

�

�

�

�

X

|x|�n
3
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✓✓

n
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◆

pj(1� p)n�j
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exp
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◆
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1

2⇡pq
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The error E3 corresponds to the tails of normal distribution. Thus we can bound it by
Lemma 9.6. The magnitude of its error is absorbed into the other error terms. And so
we are done.
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Glossary of Notations

Graph parameters See page v of the introduction for complete definitions.

m #white vertices.
n #black vertices.
uj jth white vertex.
vk kth black vertex.
sj degree of uj.
s s

1

, . . . , sm.
s 1

m

P

j sj.
tk degree of vk.
t t

1

, . . . , tk.
t 1

n

P

k tk.
� edge density, defined to be � = 1

mn

P

j sj.

Random variables on bipartite graphs In each of our random graph models we
consider the properties of random variables defined on that space. Generally uppercase
letters are used for the random variables corresponding to the deterministic parameters
of bipartite graphs which are denoted by their lowercase counterparts.

Sj degree of uj.
S⇤j truncated degree, see Definition 4.1.
S S

1

, . . . , Sm.
S 1

m

P

j sj.
Tk degree of vk.
T T

1

, . . . , Tk.
T 1

n

P

k tk.
� edge density, defined to be � = 1

mn

P

j Sj.
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GLOSSARY

Notation and terms defined to bound the likelihood of pathological degree
sequences G

t

.

locally ordered see Definition 6.2.
A,Al see Definition 6.3.
reference function R see Definition 6.4.
Y a

l see Definition 6.5.
toxic (node) see Definition 6.11.
bad (node) see Definition 6.13.
good (node) if not bad.
martingale Xi Xi := E

G

?
t

�

P

j(Sj � �n)2 | Fi

�

, see Definition 4.1.

�-algebra Fl is the �-algebra induced by the
partition {Y a

l }a2Al
, see Definition 6.4

Probability Spaces on Bipartite Graphs

Graph p-model, Gp. Definition 1.6 on p5

Graph edge-model, GM . Definition 1.7 on p5

Graph half -model, G
t

. Definition 1.8 on p6

Graph ordered-half -model, Ga

t

. Definition 6.7 on p57

Binomially based Probability Spaces

Binomial integrated -model, Ip. Definition 7.1 on p73

Binomial p-model, Bp. Definition 7.2 on p74

Binomial edge-model, BM . Definition 7.3 on p74

Binomial half -model, B
t

. Definition 7.5 on p76

Binomial integrated -model, Vp. Definition 7.7 on p84

Terminology

acceptable for a, m and n Definition 2.5 on p23

(", a)-regular Definition 2.7 on p23

(a, b,m, n, ")-pathological Definition 2.9 on p24
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